Round 2 Solutions - January 2017

These solutions written about the problems and do not constitute what the student might be
expected to write as a solution in an exam.

Some changes occur during marking and those changes may not be included here.
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Correction

In Q4(b)(i1) there is a spurious ¢ in the solution suggested to the differential
equation derived. This is a hangover from the original setting of the question in
terms of reduced mass, so should have been replaced by m,, .

The formula they find in (b)(iii) for Kepler's 3rd law may end up having a u in
it, and students will at least have come across the 3rd law in some detail and
most of them will have seen it in terms of the semi-major axis in the BAAO
paper - meaning that there should not be too much confusion over its use in
parts (c) and (d).

However, be sure to bear this error in mind when looking at their attempts at

Q4.
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British Physics Olympiad

Round 2 Solutions Qs 2-5

Qu2. Magnetoresistance

(a) The circuit is as follows:

[} /

2 .
Cross-sectional area A @

(b) Consider a spin-down electron as it moves through the first and then the second layer (from
right to left). It will experience a layer of magnetisation parallel to its own followed by one
anti-parallel. The current due to these electrons will therefore experience a resistance of

Rtot = Rp +Ra ] /

= %(pp-l-Pa) e /

Spin-up electrons will experience the opposite (anti-parallel followed by parallel), giving the
same resistance experienced overall. Since the currents can be regarded as being independent,
the resistances experienced add in parallel, giving:

Biot
2

‘ /
- ﬁ(pp +pa) 2

Rtot = Rcombined +R+r

14
= ﬂ(P?+Pa)+R+T o \/ '@

Rcombined

The total circuit resistance is therefore



(c) The circuit is now as follows:

/ 20

Cross-sectional area A

Considering either a spin-up or spin-down electron as it moves through these two layers, it
experiences the same magnetisation throughout (either parallel or anti-parallel), for a total
length of 2¢. Electrons with their spin parallel to the magnetic field will therefore experience a

resistance of 0f /
_ Py e
Py = A

and likewise for electrons with their spin anti-parallel. Since the currents can be regarded as
being independent, the resistances experienced add in parallel, giving:

1 1 1
Reombined Ep * R,
A A
20,0 * 20,0
_ Appte /
20 pppa ¢

and hence a circuit resistance of

Rtot = Rcombined +R+r @
2L pppa
p ./

= S22 4 R4r
App+pa

(d) (i) With p, < p, we get
¢
R(b) ~ ﬂpa-{—R—l—’r

20
R(c)%zpp+R+r /

N

and

©
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Al = I = Ip) ‘/
- £ & //dx
Re R

1 1 »
= £ — y )
<%pp+R+r ﬁpﬁRw)

(ii) For fixed €, r, R, pp and p, (pp < pa), the change in current depends on the physical
dimensions only in the combination z = £/A as:

1 1
Al = —
i <2mpp + R %xpa + R/)

where R’ = R + r. This is extremized when

dx

20p 3Pa
= — - ~ 0
; ((prp +R)? (3pa + R

1
= 20p(2a/2+ R)’ = 5pa(20pp + B) = 0

2 N\ 2 / 2
pppa 2R 2 R
—2 — 20, — = 0
= 5 (m+ pa> ppp<x+2pp

2 2
R/ RI R/ /
= pa | P +4—z + 4| — —dp, | 2+ =2+ | — =0
R? R”
= 2%(pa — 4pp) + 4zR — 4R + - = 0
a p

12

= 332(/% - 4pp) - (pa — 4pp) =0

pra

That is (assuming p, > p, means that certainly p, > 4p, — i.e. p, # 4pp)

- R R+r
/PpPa  +/PpPa

Differentiating again:

dz? B

d2AT . 8p2 02
@+ RY  (Gapt R



so that

d*AT _ ( 80?2 02
dz? o B (2zpp, + R')3 (%—:cpa+ R')3
" /PpPa
_ & I
- R/B 5 3 o 3
(2 ;)-g+1) (,/pp+2)
. £Pp

R (1+2 ) \/p—(l+2\/7)
D

which is manifestly less than zero since p, < p, (again assuming p, > pp means that
certainly p, > 4p), showing that this value of z gives a maximum change in current.

(e) When writing to disk, the read/write head would generate a (strong) magnetic field, creating a
magnetic field pattern in the disk surface as it is rotated underneath to store information. When
reading, the magnetised pattern on the disk read surface would rotate past the read/write
head, generating (inducing) a current in the coil. When reading magnetic field patterns, we
would therefore want a maxiqurrent generated between areas of opposite mag-
netisation so that different states, and hence different “bits” of information can be detected. We | /
would therefore want the physical dimensions of the head to be optimised such that £ = v <~
as in part (d) above. However, coupled with this we would also want to minimise the overall /

‘width’ of the head so that it reads only the desired magnetisation area at one time, and not
neighbouring ones at the same time. As a certain magnetic field strength would be required

to write to the disk it would also be important to reduce the distance between the read /write /
head and the disk.

A P {w Nk/mk C,cWW\Ud’ sy rl’tvm?m@\t;k&




Qu3. Dual Radioactive Decay

(a) The number of ion pairs is

6.5 x 106
airs = ————— = 4.17 x 10°
Mpaits = "5 6
Assuming that a single electron is liberated in each ionization event, the number of ion pairs

per second is

17 x 10—9 10 -1
The number of alpha particles per second is therefore Ulﬁ) s UBJN o
—
1.06 x 1010 5 1 f@
4.17 x 105 = 255 x 107s

(b) As radioactive decay is a random process, if the number of decays per second (activity) is A
the variation in this will be of the order of v/ A=Jf I is the curriryﬁen from (a)

I= Anpalrs
and
0] = 0 Anpairse = \/anairse
that is
51 _ VA
I A
=0l = gl
v2.55 x 10°

— -9
= amxios <TI0
0.2% x 17 x 107 \/
0.034 x 107° A |
This is approximately three orders of magnitude smaller than the cyrrent itself, so will not be
detected straightforwardly.

(c) A precision measurement of the half-life of a radioactive isotope by conventional techniques re-
quires the observations to be extended over a period of time comparable to the half-life. Even
for moderately long half-lives this is not only time consuming but introduces many experimen-

tal difficulties: The sensitivity of the detecto change in time, the source detector geometry
may not be reprmﬁm%‘duﬁn the experiment. More impor-
tant, a slight variation in apparent hmmqmple is difficult to detect
during the course of the observations. The Balanced Ion Chamber technique does not suffer
from the above difficulties. By using large cylindrical ion chambers and by introducing the
source along the symmetry axis, the counters are made less sensitive to changes in geometry
than conventional end window counters with external sources. Any change in background will
produce an equal effect in both chambers. Hence, the current reading which 15 the difference
current rémains unchanged. A-half-lifé o the region of 1 year can be measured to an accuracy
of 1% by observations extending over a period of roughly 10 days. This relatively rapid mea-
surement permits several independent half-life determinations to be made on a given sample,
and any slight variation with time of the measured alf-life is readily detectable.
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(d) Here is a graph of In(J) against time (with I in nano-amps). See table in part (f) for values,
though if the currents given in the question are converted into amperes before logarithms are
taken, the logarithmic values will be offset by In(1 x 107?/A) = —In(1 x 10°/A) ~ —20.723.
The final results for values of A\ and half-lives should of course be unchanged. From (b) we
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have I = Anpaise. Now, at a given point in time, with two isotopes present (S and L, s %y),
there will be a total number of molecules Q‘S,.ﬁb' O —

N (t) = Ng -+ NV,
= ]\7306_)‘813 + NLoe_/\Lt
assuming that each isotope decays independently. So
A = As+ Ay
AsNs + ALV
= AgNgoe ™" + A, Nyge ™4

I

With npairse = ¢ this then implies

I = cA
= C(Astoe_)‘st -+ )\LNLoe_)\Lt)

Now without loss of generality let Ag > Ap, so that S has the shorter ha,lf—{ife. Initially, I (and
hence In(/)) decreases in a nonlinear fashion due to the exponential decAy of the activities of
both isotopes. However, after a certain amount of time, Agt will be large enough so that e~*s?
will become small such that the term cAgNgge st is virtually undetectable — i.e. e=2st = 0. In
this case we will have

In(I) = In(c) +In(AsNgoe " + )\LNLoe_AL’t)’
In(eAr, Nig) — At

Therefore a graph of In() vs. time should decrease nonlinearly to begin with, but after a
certain amount of time (approximately 15 minutes by the look of the graph) it should resemble
a straight line graph with a negative gradient; the isotope with the shorter half-life is no-longer
significantly contributing to the current.

2



(e) The values for 17 minutes and greater (see table in part (f)) are plotted below. Since the gradient

infifnn
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1

In{i} vs t for t>16 mins

y =-0.0148x + 2.0638

1.3
17

i8 bl 20 21 &2 3
Time/mins

must be equal to — A, this gives Ay, = 0.0149 and hence a half life of

In(2)
YR

465min T 5 wpda
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L3

Q




(f) The formula for the long half-life component of the gas In(;,) = —0.0149¢ + 2.0638 (from the

graph for ¢ > 17 min) then gives values of Iy, = e

—0.0149642.0638 o1 [ = [, .. — I, ete.

Time /min | In(l;,/nA) | I,/A x 107° | Is/A x 107° | In(Is/nA)
0 2.833 7.876 9.124 2.211
1 2.703 7.760 7.170 1.970
2 2.584 7.645 5.616 1.726
3 2.477 7.532 4.380 1.477
4 2.381 7.421 4.400 1.224
5 2.296 7.311 2.623 0.964
6 2.220 7.203 2.009 0.698
7 2.154 7.096 1.525 0.422
8 2.096 6.991 1.146 0.136
9 2.046 6.888 0.849 -0.164
10 2.002 6.786 0.618 -0.481
11 1.964 6.686 0.441 -0.819
12 1.930 6.587 0.305 -1.187
13 1.901 6.489 0.203 -1.594
14 1.875 6.393 0.128 -2.058
15 1.852 6.299 0.073 -2.611
16 1.831 6.206 0.036 -3.323
17 1.813 6.114 0.012 -4.428
18 1.795 6.023 -0.002 N/A
19 1.780 5.934 -0.007 N/A
20 1.765 5.847 -0.006 N/A
21 1.751 5.760 0.0002 -8.394
22 1.738 5.675 0.010 -4.577

For short times (say up to 8 mins) In(Jg) can be plotted as below. Since it is expected that

15

In{/ndy

0.5

In{1} ws t for t<9 mins for short half-life isotope

y=-0.2585x% +2.2371

‘Time/mins




Is = cAgNgoe !, the gradient of an In(Ig) against time graph should be equal to —Ag. The
graph above therefore gives

Ag = 0.259
In(2) ~
= Ta1 = -
83 Ag i /} VN\;.WJ"\)
~ 2.7min 2 L

(g) No nuclei of type X present initially, so in both cases curve has same y-intercept as in part (d)
(approx 2.8). Then

(1) If Ax > Xg, T 1 < Ty Initially, decay of S produces X which then decays rapidly giving an
initial rise to a peak followed by a smooth decay to long-time behaviour as in (d). Time-
frames for each component to effectively decouple can be roughly estimated by (say) the
time taken for the current to fall to a hundredth of its initial value. Since for the decay

of any isotope
t=—tln(
DY Ny

we may estimate the time after which S effectively ceases to affect the decay as

1 1 .
fs =~ 52585 (100) ~ 18 mins

This makes sense as the graph plotted in (d) has a linear section beginning at about 15
minutes (we used 17 minutes for the graph in (e)). Taking Ax as being roughly 5 times
As (As = 1.2 here for the sake of concreteness):

So, taking this all together, y-intercept is approximately 2.8, then there is an initial peak
followed by a nonlinear decay where S and L both contribute before the graph becomes
linear after about 15-20 mins.

Ax > Ag

Ln[I/nA]

T S S S S ! t/min
30



(ii) If Ax < Ag, Tx1 > Tg;. In this case X dominates the long-time behaviour. The first two

sections of the graph are therefore roughly as in (d), with a final linear section taking
over after approximately

1 1
tL 00149 n(100> 300 mins
/\)(<AL

Ln[I/nA]

L ! 1 1 L 1 L 1 Il 2 1 I 1
00 400 600 800

- e,

Extra information not expected in a student answer: / .
To derive the relationship that describes these curves, consider first the differential egaagion
governing the population of isotope X. The number of nuclei (and hence activity/rate of decay)
of this isotope decreases due to its decay, but increases due to the decay of isotope S:

' t/min

d.V-
—= = —AxNx + AsNs
dt
but of course Ng = Ngge s, so
d.V:
—2 = —AxNx + AgNgoe ™!
dt
However, this is of the form
dNx

S+ PONc= Q)

where P(t) = M\x (= const.) and Q(t) = AgNgoe™s*. This type of differential equation can be
solved by first multiplying through by the integrating factor

ef P(tydt _ 6fAth = ext

Multiplying the differential equation through by this factor gives

%\?ﬁe/\xt 4 )\Xe)‘xt Ny = MgNso g Ast At
= = (Nxe) = AsNpeOxo)
= Nxe*t = / Mg NgoePx =) d¢
= Nxe’xt = X%S;Se()‘x_’\s” -+ const.



Now at ¢t = 0, Nx = 0 so the constant of integration is —fgﬁ%. Rearranging gives

NX (e—Ast . e—)\xt)

Overall, therefore,

N(t) = Ng+ Np,+ Nx
AsNgo

= N —Agt N — ALt A
so€ "+ Nppe T+ M — s

(e—)\st o e—-)\xt)

and

A = Ag+ A+ Ax
= AgNs + A\LVL + AxNx

— )\SNsoe—)\st 1 )\LNLOB_)\Lt + )‘S’\XNSO

—Ast __ —Axt
N — g (e e "X

Finally, since the alpha particles emitted all have the same energy, I = cA again. Note that
the y-intercepts of the graphs in (e) and (f) will allow cNgg and ¢/Np to be found (and hence
Ngo and Nip) via

In(ecNg) = 2.2371

1
= cNgy = . 22371
B

1 oom
0.2585
= 36.233
and

In(cNy,) = 2.0638

1
= cNy, = ——e20638
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(a) Re-write polar formula as r + er cos§ = « and, noting that = = r cos 6, re-cast as

rt+er = «
= (a —ez)? = 1’
= (o —ex)? = z° +9°
2?(1 — ) + 2cex +9y* = o (1)

Now complete the square in ‘z’, recalling that f(z) = az® + bz =a (z + 2%)2 — %, so that
2 2.2
o753 a’e
1 — 2 _ 2 2
( 5)(“1-52) - ¥ —°

2
5 Qe s O
:>(1—5)<x+1_€2> ty= 1—¢?

2
N (a: 1222) n 2

This is of the form

a2 + b2 =1
so the ellipse has
o€
centre (2o, yo) = T
and
semi-major axis @ = e
) )
and
. ) o
semi-minor axis b =
1— g2
with
b2
eccentricity = 1-—
a
= /1—(1-¢€?)
€

Note that if € = 0 then (2) reduces to >+ y* = o, the equation of a circle (a sort of degenerate
ellipse), while if € = 1, (1) reduces to y? = a? — 2az, the equation of a parabola. Therefore we
must have 0 < e < 1.

12



d1—|—d2=2a

2a

(b) Note that as angular momentum is ‘L = m#26’, the angular momentum of the planet (assuming

Mg > m,, so that issues with reduced mass and centre of mass can be ignored) is L = mpr20
(where 0 = %),

dt

(i) Newton’s law of gravitation states the attractive force of gravity between two masses acts

along a line joining their centres and is given in magnitude by

As the line of action of the gravitational force passes through the axis of rotation it
produces no torque, and, assuming no other forces present, there is therefore no net
torque. For rotational motion, Newton’s second law states that the net torque is equal
to the rate of change of angular momentum:

dL
Tnet = —(_i_;
where L is the angular momentum of the planet. Since 7, = 0, % = 0 and so

L = constant.

Now the area element for an ellipse is in principle (this is easily derived by looking at
areas in polar coordinates with a changing radius)

1, 1
514 = 57" (59‘*‘57‘57"(50

but the second term is second order in small quantities, so can be neglected as 66 — 0.
Thus, in this limit, we have:

1

dA = 57'2(19
dA 1 ,d9
_ = =rf—
dt 2 dt

13



But the angular momentum of the planet is L = mprzé S0

da4 = i = constant
at  2m,

and hence 6A = const. x dt, i.e. equal areas are swept out in equal time intervals. This
is Kepler’s second law.

(ii) The energy of the system, given by

E = KE+PE

1 1 GMSm
= Empvfadial + §mpvt2angentia.l - Tp
1 . GM
fo §’m,p’l;2 + 57’)’&,,7‘292 - —Smp
r
2" 2m,r? 1 ‘

"4
where 7 is the distance of the planet from the Sun, and £ = GMgm,. Note that since
both the radius and angle change in an elliptical orbit, there are two contributions to the
kinetic energy from motion in the radial direction and angular motion.

Extra information to connect with Kepler’s first law:

In the following, u = AJ}JSST% is the reduced mass of the system and can be set equal to

my, for the current case under consideration where Mg > m,. Now we don’t really want
r as a function of time, but rather as a function of 6, so exchange ¢ for 6 via

,_dr _drdfd
"TH T ddr

] _ g 2 6‘2 _ —(—if: 2 L2

"=\ag) " T \ag) 2
g E(ar\ L Lk
— 2urt \ df 2ur?

-(§) -

\/Q,U (E"}‘%“‘ 22:2)

where we have chosen the positive square root. Now the term in the denominator under
the square root is a quadratic in 1/r, so completing the square here (see (a)) gives:

L2 /1\° 1 uk? L2 (1 pk\®
() e (G)er = ()
ok () 2BDE (DL gk
-~ 2I2 wk? Lk r L?
2 2 2 2
_ e 2B (1
21?2 wk? pkr

14

Then we have
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so that

(d@) _ L/r?
dr N 2
24,2 2 2
Jo (11 - (- 0))

L2/ uk

2
(e (&)

Now, let a = L*/uk and &2 = 1 + 256%2 and, with reference to the sketch in part (a),

choose § = 0 corresponding to r = /(1 + &). Hence
0 T
/ df = / dr =
o (e (=)

Change variables to u = % — 1 so that du = —dr which leads to

-1 -1
o — / du—
€ (52 — ’Ll,2)

This is the standard integral quoted, or, proceeding explicitly, change variables again to
u = g cosw so that du = —esinw dw leading to

arccos((a/r—1)/¢) dw sinw
_/0 (1 — cos? w)

arccos((a/r—1)/e)
= / dw
0

_ arccos( (%—1))

giving ¥ = 1 + ecos¢ and hence

o | =

. o
 1+ecosh

Note that the definition of & and €, together with the fact that o = a(l — £?) means that
k
E — T oa"
(iii) Go back to Kepler’s second law
dd L
dt — 2m,
Over a time interval equal to the orbital period 7' this implies that
L
A=—T

 2m,

15



where A is the area of the ellipse.

The area of an ellipse is given in the question, but the calculation is straight-
forward:
The area of an ellipse is most easily found from the cartesian form

LB2 ?7’2
@ Tp =l

A = 2/ ydz
a 2
= 2/ q/b2—6—2x2dm
—a a

= 22/ Va? —z2dzx

S0

but this is just

b
A - E X Acircle radius a

b
= —ma?
a

= Tab

So

2my,mab

L
Now, from the relation between a, b and ¢, we have

P = a1 — &)

T —

and from the definition of «
L? = myka

and finally from the connection between o and a
a=a(l—¢%)

Putting all this together

dm2ma®p?

72
dmlmat(1 — €?)
mpka
dmym2at(1 — &%)
ka(l — e?)

A7%m,
_ P 3

that is




Note: In parts (c) and (d), the more general p has been used in place of m, to start with,

with the simplification Mg + m, = Mg and y ~ m, taken at the end. Note that in terms of

these, the period of orbit is given by 12 = 4”: Lg3 = el ];gimp).

(c) Assuming that the low earth orbit (LEO) and geosynchronous orbits are circular to a high degree
of accuracy (as they usually are), and that they lie in the same plane, and that the impulses
occur effectively instantaneously, the situation is as follows

Vf — V2

Geosynchronous

and all of the formulas previously arrived at hold with the replacements Mg — Mg and
my, — my with Mg the mass of Earth and m, the mass of the satellite. Furthermore, since
ms/Mpg ~ O(10721), Mg > m, and we may approximate u = m,.

With the radius of Earth, rp = 6380 km,
rm=rg+h=6.38%x10°m+0.32 x 10°m = 6.70 x 10° m

while the radius of a geosynchronous orbit may be found from Kepler’s third law

G(Mpg +mg)T?\ 3 GMpT?\ 3
']"2 = q = ~
472

42

<6.67 x 10711 x 5.97 x 10% x (24 x 3600)2>%
472

= 42.23 x 10°m

Now since r; is the radius at perihelion and r9 is the radius at aphelion of the transfer orbit
we have (see sketch in part (a))

e! a(l — %)
- — — a(l —
e s T a(l—e)
! a(l—€%)
T IS 1. =a(l+e)

17
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To—T  To—T
2a To + 71

S0 19 — 11 = 2a€ and

E =

This gives the transfer orbit an eccentricity of

42.23 — 6.70

= mo3teq0 072

i.e. it is a highly eccentric orbit.

Now the velocities of the circular orbits may be found from Newton’s second law via

wi k
ri
k
=0 = —
KT
and similarly v2 = % (we will soon approximate u & m,). For v; and vy, the velocities at

periapsis and apoapsis in the elliptical orbit, go back to conservation of energy and recall (from
(b)) that £ = —k/2a. So

1 k k
2/1’ ¢ 7"1 B T -{-?‘2

u\rt m4+mr

and similarly v} = & (ZL> Summarising

pre \ ritre
9 k
v = —
M1
5 k
vy = —
HT2

’ pr1 \7m1+ 172

,Uf = —
HTe \T1+ T2

so that at periapsis, Av, = v; — v; is given by

k 2
Avy, = [ — ( LT 1)
KT T+ 179

and at apoapsis, Av, = vy — vy is

2
Av, = L3 (1 — n )
M2 L+ Ty

18




Finally, setting ¢ =~ m, and kK = GMgm, gives

A . \/GME \/ 27"2 1
= ™ 1+ 1

A’Ua _ GME (1_ 2’)“1 )

To 1+ 7o

which then give

Av = \/6.67 x 10711 x 5.97 x 10% \/ 2x4293
v 6.70 x 106 6.70 4 42.23

= 2.42kms™!
and
Ay = \/6.67 x 101 x 597 x 10 [ [ 2%6.70
¢« 42.23 x 106 6.70 + 42.23
= 1.46kms™!

Note that the velocity of the craft is increased at both points giving a total Av of

Av = |Avy|+ Ay,
2.42 x 10° ms™ + 1.46 x 10° ms™*
= 3.88kms™!

The time taken to achieve transfer is simply half the time period of the transfer orbit

T

ttransfer

4723

_ 1 w2(ry 4 19)°
2V 2G(MEg +m,)
1 [m2(ri 4 1r)?

2 2G Mg

1 \/ w2 x (6.70 + 42.23)3 x 1018
2V 2x6.67x 1071 x 5.97 x 102

N|—= DN

Q

= 19050s = 318 min = 5.29 hr

(d) The concepts regarding the transfer orbit from Earth’s orbit around the Sun to Mars’ orbit will

19



be the same as in part (c) giving

k
¥ o=
Hry
k
o} = —
HT2

’ pry \71+ 7o

2 k ( 27“1 )
vy = —
pro \ 71+ 17y

similarly to in (d), but where k = GMgm, and p = %ﬁnﬁ:

Vf — U2

Mars

However, it will also be necessary to transfer the craft from its orbit around the Earth to its
transfer orbit at the start and from its transfer orbit to orbit around Mars at the end. Taking
the departure from Farth first, the velocity necessary to reach for the transfer orbit is v;.
However, this is in a frame of reference relative to the Sun. In a frame of reference relative to
the Barth the required velocity is V; = v; — v1, but this is just Av, as defined in part (d) with
the new definition of i and k. If the spacecraft is originally in orbit around the Earth at radius
Ry (use capital letters for orbits around planets in this part of the question, and lowercase
letters for orbits of planets around the Sun), then a velocity Vescape must be reached from that
orbit which from energy conservation can be found from

1 1
_2'/'1’1‘/752 = Eiu’lvvezca.pe_

2k,
iRy

I
Ry

2 — 2
= V;zscape - ‘/z +

where k; = GMgm, and puy = 1\1/\1{3121?7;5 as in (c). There is no potential energy term on the left

hand side since the spacecraft is assumed to have left the sphere of influence of the Earth once
it enters the transfer orbit. However, since the spacecraft was initially in a circular orbit of
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radius R; around the Earth with velocity (from Newton’s second law for circular orbits)

ki
V2 =
)

so the initial Av required is

/
Av, = V:ascape - Vi

2]€1 kq

= 1/;24_ —
\/ p1 Ry \/MlRl
_\/k( ora _1>2+ ok [
K T1+ T2 w1kt p1 Ry

Finally, approximating p ~ m; and p; = my, and substituting k&; = GMgm, and k = GMgm,
we have

2
GMg 279 2GMpg GMpg
Av, = —1 -
’Up \/ T1 ( T1 + To ) * Rl Rl

Likewise, on arrival at Mars the spacecraft has velocity v relative to the Sun. However as Mars
is travelling at velocity v; in the same direction (with v; > vy), its velocity relative to Mars is
Vi = vy — v1. A velocity Veapture must be reached from that for which (here ky = GMym, and

,Ll,2 = Mpyr+ms

1 1 ko
5/”’2sz = “2“/-1'2‘/(;ipture - ﬁz

2ko

= V2 = V?
capture Vf + Lo Rg
and with orbital velocity
ky
Vi =
> R

giving a final Av of
A'U; - %apture - ‘/2

2k)2 k]g
= V2 4+ —
\/ f o Ry \/M2R2
N \/_k_( 27"1 ~1>2+ 2]€2 o /{32
pra 71+ To palty Ho Ry

Finally, approximating p = m, and ps = m,, and substituting ky = GMym, and k = GMgm,

we have
2
GMS 27"1 ) 2GMM GMM
AV = -1 —
Y \/ T9 (V 1+ 7o * Ry Ry

So the total Av budget will arise from
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Taking 365 days to orbit the Sun, the radius of the Earth’s orbit about the Sun is approximately:

o= <G(MS+ME)T}_2?)%
1

472
_ (GMTE\?
- 472
/667 x 1071 x 1.99 x 10% x (365 x 24 x 3600)2 ?
N 472
~ 1.50x 10" m

Likewise for Mars

GMS+MM TZ)
Ty =

S
(1)
5

&Q

6.67 x 1011 x 1.99 x 10 x (1.88 x 365 x 24 X 3600)2>%
42

28 x 10" m
and

Ry = rg+300km
= 6.38x 10°m + 0.3 x 10°m
6.68 x 10°m

with

Ry = 7y +250km
= 3.40x 10°m + 0.25 x 10°m
= 365x%x10°m

, G Mg ZGME GMg
Av, = —-1) +
1 T1 + To Rl
— 6.67><10—11><1.99x1030( [ 2x2.28 ) +2%8. 67x10~11x5.97x1024 _  [6.67x10~ 11 x5.97x 1024
1.60x 1011 1T.50+2.28 6.68x10% 6.68x 1008

= 3.58kms !

Giving
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and

2
A / GMS 27"1 1 + 2GMM GMM
Vg = 1/ - -
a
&) 71+ To Ry Ry
— 6,67x10—11x1.99><1030( [ 2x1.50 _1)2+2x6.67x10“‘11x6.42x1023_“ 6.67x10~ 11 x6.42% 1023
2.28x 1011 1.50+2.28 3.66x 108 3.65x 108

= 2.09kms™}

The total Av budget is therefore

Av = |Avy|+ Ay
= 3.58kms™! + 2.09kms™*
= 5.67kms™?

In calculating this we have assumed that the fuel burn to generate Av;, takes place all at once
and effectively instantaneously. Likewise the Av/, burn. Furthermore the orbits of Earth and
Mars are taken as being circular. This is not such a bad approximation for Earth, with its
eccentricity of 0.017, but is not such a good approximation for Mars, which has the second
most eccentric elliptical orbit in the solar system after Mercury. Furthermore, the eccentricity
of the transfer orbit is

Te—T1
o+ 11
2.28 — 1.50

2.28 + 1.50
~ 0.206

which is of the same order of magnitude of the eccentricity of Mars, so a treatment of the orbit
of Mars as circular is not really justified. Mars’ position at the instant of proximity would
therefore have to be more accurately calculated. On a related note, the plane of the orbit of
Mars is inclined to the plane of the orbit of Earth (at an angle of almost 2°) and this would
need to be accounted for too.

The time taken for the transfer to Mars would simply be half the period of the transfer orbit:

T

ttransfer

472a3
G(MS + ms)

1 (it r)?
2V 2G(Mg + my)
1 7w2(ry 4+ 79)3

2 2GMg

1 \/ 72 x (1.50 + 2.28)3 x 1033
2 X 6.67 x 10-11 x 1.99 x 1030

N = N

Q

2

= 2.24 x 107s = 259 days
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Now

GMg
TeWgp —
T
GMg
= Wg = 3
T
and likewise
GMg
Wy = 3
T3

Since Mars will travel through an angle of wastanster Detween the time of launch of the spacecraft
from Earth and the time of its arrival at Mars, the initial angle between Earth and Mars at
the time of launch will be

90 =T — Warliransfer
So, choosing ¢t = 0 to be the moment of departure of the spacecraft from Earth, and referring
everything to the position of Earth at this instant
g E = (,()Et
7 M = wMt + 00

Then the angle between a radius joining the Sun with Earth and the Sun with Mars is

Oy — 05
= (wpm —wg)t+ 6

QME

Now since wg > wys, Oy will start from 6y and will rapidly decrease before becoming negative.
In particular, when the craft arrives at Maxs, ¢ = {ianster a0d Oprp = 0 where

0f = (WM — Wg )ttransfer + 7T — Wy ttransfer

= = wEttra,nsfer

Redefining ¢ = 0 to be the time of arrival for the return journey (and calling the newly defined
angle 0),)

Opyp = (wv —wp)t+05

But, by the symmetry of the situation, when departing from Mars for Earth, the angle between
Earth and Mars must be 6 = ™ — Wptiranste and we wish to know what ¢ = Lwaiting 18 for

we = —0; (minus since Earth will have overtaken Mars by this point). But, 6 = 6; so
—20;
twaiting i
Wy — WE

This equation may produce a negative value - indicating that the required time actually occurs
before the craft has arrived at Mars - and this is of course because —20; is only defined up to
2m. In general, therefore

—29f — 2

twa,iting =
Wy — WE
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or

—20; — 2mn
twaiting -
eI (+ - +)
2 1

For n = 0 this gives
VvVGM,
-2 X (7T - Ta/zsttransfer)
iwaiting = :
1 1
GMS ( 3/2 3/2)
Ta ™

v/6.67x10—11x1.99x1030 7
—9x <7r — A 50xT0T1572 X 2.24 x 10

V6.67 x 1071 x 1.99 x 10% ((2.28><11011)3/2 - (1.50x11011)3/2>
= —2.81%x10"s

- This is negative so we must go to at least n = 1:

vGM,
-2 (7{- - T3/2Sttra,nsfer) — 2m
1

Lwaitin =
g
1 1
GMS <7~3/2 - r3/2)

2 1

—11 30
~2 x (m — SEIPIEAIIBIO » 9,24 x 107) — 2

V6.67 x 1011 x 1.99 x 1090 ( 1 — 1 )

(2.28x1011)3/2 ~ (1.50x1011)372
— 3.98 x 10"s = 460 days
Giving ultimately

ttrip = 2%transfer + twaiting

(2 x 259 + 460) days = 978 days = 2.7 years = 2 yrs 8 months
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Qub. Thermal Properties of Ideal Gases

(a) A monatomic ideal gas has -ng of kinetic energy per molecule on average. There are no further
contributions to the energy from rotational/vibrational modes, so the internal energy is:

U= gnRT

and hence U = gnR(ST. A monatomic ideal gas has equation of state pV = nRT, and
furthermore the first law of thermodynamics states that

U =6Q + oW
where () is the heat supplied to the system and 6W = —pdV is the work done on the system.
(I) The definition of heat capacity at constant volume, Cy is:
0Q = CyoT

Since the volume of gas is constant, 6V = 0 so W = 0. The first law therefore reduces
to 0U = 6Q so that 3nRST = Cy 6T and hence

3
OV = §?ZR

(IT) The definition of heat capacity at constant pressure, Cy is:
0Q = C,6T
Substituting this into the first law gives

gnR 0T = CpoT — péV (3)

~—~~
Cv

but using the equation of state pV = nRT implies
pdV +Viép =nROT

and since pressure is constant, dp = 0 so pdV = nR¢T. This means that (3) becomes

CydT = C,6T — nRT

i.€e.
Op = CV +nR
or
5
Cp = §’RR

for an ideal gas.
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(b) Note: Initial derivation here not needed as part of answer, of course.
An adiabatic change has 0¢Q) = 0, so the first law becomes 6U = W, or %nR(ST = —pdV. But
using the equation of state as in (IT), pdV + Viép = nR6T, so

Cy
—(pdV dp) = —pd
5 (PV +Vip) pdV
Cv .. Cy
= ;LEVOP = (1 + nR) pdV
)
L0 _ _(CytnR) OV
p Cy 4
op Cp\ oV
~ p a (OV) 14
Let —g‘% = v, then
o _ / o |
p )V
=Inp = —vyInV + const. ;
= Inp = In(const.V~7) <
so that .
W,\ pV7 = const.

with v = % = % Then using the equation of state, pV = nRT

0]

p'~"T7 = const.

\

and %V'Y = const. so

TV = const. |

v
(—RI = const. 8
P

(c) Starting configuration

-_1 pO;%:TO
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(i) Final configuration

4 p,Vb,T p,Vb,T }--

Process performed slowly and with cylinders thermally isolated so process is adiabatic.
Hence (e.g.) TV?~! = const. Therefore:

Ty = T(%)

SO
T=2"T

A monatomic gas has v =5/3 so

T = 27237, ~ 0.63T,

(ii) Final configuration

pOaV
Vo, T

Let V = aVp. Conservation of number of moles of gas between start and end gives:

= Vo _ po(Vo +alh)

To T

SO T
=1 4
7 =l+o @)

When valve is ‘slightly’ opened, no work is done on gas but it naturally expands to fill
volume 2Vp. No heat is exchanged as system is thermally isolated, so 6@ = 0, hence
OU = 0 implying 6T = 0 for an ideal gas — its temperature remains at 7, for this part of
the process. Pressure remains at py.

Work done on gas during motion of piston is then
W = —podV = —po(Vo + oV — 2Vp) = —poVo(a — 1)

As cylinders are thermally isolated from the surroundings, no heat is exchanged so motion
of piston is adiabatic with 6W = §U = %nR(ST S0

3
—poVo(a— 1) = gnR(T —Tp)
or, rearranging
PoVo _3 T
T (1—-a)= 2nR (To)
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(iii)

But, using the ideal gas law, poVo/To = nR, giving

2 (3)-0-a ®

Adding (4) and (5) gives

S0

Final configuration

po,V
T

Now the cylinders are kept thermally isolated from each other so their final temperatures
may be different. Let V = 8V,. The work done on the gas is (as in (ii)):

SW = —pdV = poVo(1 - f)

and since no heat is exchanged, W = U, though the change in internal energy is dif-
ferent to before. n; moles change in temperature by 17, — Ty, while ng moles change in
temperature by Tr — 1y so that

3
U = §R(nL(TL —To) +nr(Tgp — To))

3
- 3 (nLRTL — nyRTy + npRTH — nRRTO)

3
= 5 (')’LLRTL -+ nRRTR — (’I’LL + ?’LR)RT0>

Using the ideal gas law (and the fact that pressure is kept constant), npRT = poSVa,
nrRTr = poVo and (ng + ng)RTy = noRTy = poVp, meaning that §U reduces to

3
U = 5(/3290‘/0 + poVo — poVb)
3
= iﬂPOVO

The first law then becomes

oW = o6U
3
=pV(l-8) = iﬁpo%

giving
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Because the cylinders are thermally isolated from each other, only the gas in the left
cylinder undergoes an adiabatic change, and for the gas in the left cylinder, therefore,
p!=YT" = const.. Since pressure is constant, temperature of the gas in the left cylinder

must also be constant, i.e. .
Using the ideal gas law for the gas in the right cylinder, Tz = 22 and ng can be found

nrR’
from
Nr = Ngog— Ny,
_ Vo pofVo
RT, RT;,
_ Yo pobBe
RT, RT,
2oVo
= (1—p)228
0)
PoVo
T, —
B TLRR
_ PoVo
(1 = B)poVo/(RT)
=15

giving | Tr = =1 |. Overall, then:

T, =Ty Tr = gTo
(iv) Final configuration
I D, Vb) T D, ‘/(), T I—

No work is done, since the gas is simply allowed to expand, and no heat is exchanged
since the cylinders are thermally isolated. This is a joule expansion. Since dW = §Q) = 0,
0U = 0, and since it is an ideal gas this means that 67" = 0 too. Hence:

/@;

(v) Final configuration

_| pavbaTL p>%>TR I—
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The internal energy of an ideal gas is (of course) U = %nRT, so conservation of energy
implies

3 3 3
§n0RT0 = 5?’LLRTL—|—§TZRRTR

= noRly = npRI,+ngRTRr
and using the equation of state for an ideal gas, pV = nRT" gives
poVo = pVo + pVo

that is o
b= 3

Conservation of number of moles of gas then means

ng = ngp-+ng
_ Y% _ P PV
RT, RT;,  RTg
L (N ()
RT, 2RT, * 2RTp
w0 1 1/1 1
S 6
T, 2 (TL " TR> ©)

Again, the gas in the left cylinder undergoes an adiabatic change so obeys p'~"T" = const.
Raising this to the power of 1/ gives

1—
p"‘rJT = const.

. 5 . : l—y _ 2
Recalling that v = ¢ for an ideal monatomic gas, T” = —£ 80

1-—v

T, [(p\ 7
7 - ()
1\ 2/5
¢

Ty, = 272/5Ty =~ 0.76T}

SO

Finally, from (6)

ToTy,

207, — Ty
2—2/5

= g s

S0

o] Mostgan § 22



