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Instructions

Time: 3 hours (approximately 30 minutes for Q1 and 50 mins each for Qs 2, 3, 4).

Questions: All four questions should be attempted.

Marks: Questions 2, 3, 4 carry similar marks.

Solutions: Answers and calculations are to be written on loose paper. Graph paper should be
made available. Students should ensure that their name and their school/college are clearly
written on each and every answer sheet. Number each question clearly and number the pages.
EACH QUESTION ANSWERED must be started on a new page.

Clarity: Solutions must be written legibly, in black pen (the papers are photocopied), and
working down the page. Working, calculations, explanations and diagrams, properly laid out,
must be shown for full credit. Scribble will not be marked and overall clarity is an important
aspect of this exam paper.

Formula sheet: You are allowed any standard exam board data/formula sheet.

Calculators: Any standard calculator may be used, but calculators cannot be programmable
and must not have symbolic algebra capability.

Confidentiality: Do not discuss any aspect of the paper on the internet until 8 am Saturday
1st February.
THIS QUESTION PAPER MUST NOT BE PHOTOGRAPHED OR TAKEN OUT OF

THE EXAM ROOM.

————–�———————�———————�———————�———————

Training Dates and the IPhO (Vilnius, Lithuania, 17th to 26th July)

Following this round, fourteen students eligible to represent the UK at the International
Physics Olympiad (IPhO) will be invited to attend the Training Camp to be held in the
Physics Department at the University of Oxford, (Friday 27th to Tuesday 31st March 2020).
Five students will be selected for further training. From May there will be mentoring by email
to cover some topics and problems. There will be a weekend Experimental Training Camp
in Oxford 15th – 17th May (Friday evening to Sunday afternoon), followed by a Training
Camp (in Cambridge), Thursday 25thJune – Wed 1st July, with a second Experimental
Training Camp (in Cambridge) Sunday 12th – Thurs 16th July.



Important Constants

Constant Symbol Value

Speed of light in free space c 3.00× 108 m s−1

Elementary charge e 1.60× 10−19 C

Acceleration of free fall at Earth’s surface g 9.81 m s−2

Permittivity of free space ε0 8.85× 10−12 F m−1

Mass of an electron me 9.11× 10−31 kg

Mass of a neutron mn 1.67× 10−27 kg

Mass of a proton mp 1.67× 10−27 kg

atomic mass unit u 1.661× 10−27 kg

(1u is equivalent to 931.5 MeV)

Radius of a nucleon r0 1.2× 10−15 m

Planck’s constant h 6.63× 10−34 J s

Gravitational constant G 6.67× 10−11 m3 kg−1 s−2

Boltzmann constant kB 1.38× 10−23 J K−1

Molar gas constant R 8.31 J mol−1 K−1

Specific heat capacity of water cw 4.19× 103 J kg−1 K−1

Mass of the Sun MS 1.99× 1030 kg

Mass of the Earth ME 5.97× 1024 kg

Radius of the Earth RE 6.38× 106 m

T(K) = T(◦C) + 273

Volume of a sphere = 4
3
πr3

ex ≈ 1 + x+ . . . x� 1

(1 + x)n ≈ 1 + nx x� 1
1

(1 + x)n
≈ 1− nx x� 1

sin θ ≈ θ for θ � 1

tan θ ≈ θ for θ � 1

cos θ ≈ 1− θ2/2 for θ � 1
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Qu 1. General Questions

Write you answer starting on a new page for this question.

(a) For a modest temperature range, a sample of a metal in the form of a cube of side `0
and volume V0 at room temperature is heated by ∆T . For small temperature changes, its
volume expands by a temperature dependent factor such that V = V0(1 + γ∆T ), whilst
its length expands linearly by a factor given by ` = `0(1+α∆T ). If the expansion factors
are both small, γ = kα, where k is a numerical factor. Derive a value for k.

(b) Two cells have e.m.f.s ε1 and ε2 and internal resistances r1 and r2.

(i) What are the effective e.m.f.s and internal resistances when these cells are arranged:

i. in series?
ii. in parallel? (assume that the e.m.f.s and internal resistances are now the same)

(ii) A cell has an e.m.f. of 1.0 V and an internal resistance of 50 Ω. How many of these
cells, and in what arrangement, would be needed to power a 5.0 W, 6.0 V filament
lamp?

(c) Shown in Figure 1 below is an image of an electrified fence with ice crystals on it. Give
a physics explanation of this effect that you can see.

Figure 1: credit: AAPT 2013 High School Photo Contest
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(d) An electric car carries an accelerometer which also records the distance travelled. A
graph of the recording when the car starts from rest is shown in Figure 2. Estimate
the velocity of the car after five seconds, and the power per unit mass which is used to
accelerate the car at that moment.

Figure 2
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Qu 2. The Atmosphere & a Molecule

Write you answer starting on a new page for this question.

I The atmosphere
The atmosphere is composed of 78% nitrogen, 21% oxygen, 0.9% argon and about 0.1% trace
gases. Water vapour varies between about 0%-4% depending on location and time of day.

(a) Consider a fluid at rest in a gravitational field g. Show that, if frictional forces within the
fluid can be neglected, the pressure variation across a sufficiently small cube of
incompressible fluid varies linearly with the height of the cube. This is referred to as
hydrostatic pressure.

(b) In a simple model, the atmosphere is treated as an ideal gas.

(i) Show that the variation in pressure with height is exponential. You may assume that
the pressure variation across a very thin layer is hydrostatic, and that temperature is
constant.

(ii) Why is it safe to assume that g is constant too?

(iii) What do you think is the biggest issue with the formula found in (i)?

(c) In another model, the gas (still ideal) is assumed to expand adiabatically as it rises. An
adiabatic change is one for which the pressure, P , of the gas and its volume, V , are
related by PV γ = constant, where γ = CP

CV
with CP and CV the heat capacities of the

gas per mole at constant pressure and volume respectively.

(i) Find the rate of change of temperature with height, dT
dh

– known as the temperature
lapse rate – under these circumstances. You may assume without proof that CP =
CV +R with R the molar gas constant.

(ii) Hence or otherwise find a more realistic formula for the pressure variation with
height in the atmosphere.

II Spectra of molecules
A diatomic molecule can store energy in the form of vibration and rotation of the molecule.
The energies can be shown to be quantised i.e. there are discrete energy levels similar to the
energy levels encountered in the visible spectrum of an atom.

(d) An HCl molecule can be modelled as two masses, m1 and m2 with mean separation ` at
the ends of a stiff spring, with spring constant k, representing the bond. The frequency
of vibration can be expressed in terms of k and µ, where µ(m1,m2) is function of m1

and m2. µ has dimensions of mass and is known as the reduced mass. By considering
the centre of mass of the system or otherwise, derive an expression for the frequency of
vibration f of the masses on the spring in terms of m1 and m2 and k. Hence write down
the expression for µ.

The IR spectrum of HCl is shown in Fig. 3. The wavenumber on the horizontal axis is 1/λ
measured in cm−1. A low pressure gas of HCl is illuminated with IR radiation and the
absorption measured over a range of frequencies. The HCl molecule will rotate corresponding
to a number of close, discrete energy levels designated by the letter J = 0, 1, 2, 3 . . . shown in
Fig. 4. The two vibrational energy levels labelled with n = 0 and n = 1 correspond to a very
much larger energy level difference.
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Figure 3: IR spectrum of HCl. The inset shows the effect of the Cl-35 and Cl-37 isotopic mass
difference. Credit Azo Materials https://www.azom.com/article.aspx?ArticleID=15226

Figure 4: Energy level diagram for HCl. Two vibrational energy levels are shown (n = 0 and n = 1).
The rotational energy levels are designated by the J values, with the J = 0 and J = 1 levels very close

together and shown as a thick line. Only transitions corresponding to ∆J = ±1 are allowed.
Credit https://www.colby.edu/chemistry/PChem/lab/VibRotHClDCl.pdf; Vibration- Rotation Spectroscopy of

HCl and DCl

(e) For the wavenumber value 2900 cm−1 calculate the energy E of the transition and
calculate the corresponding temperature using E = kBT .

Only transitions between states corresponding to ∆J = ±1 are allowed. So the ∆J = 0
transition is missing. In Figs. 3 and 4 the set of transitions in which the upper level has the
higher J is called the R branch, while the P branch has this reversed. The transitions within a
branch are labeled by the J of the lower level; R(0), P(1) would be the labeling for the lowest
J transitions.

(f) Draw a labelled energy level diagram, similar to Fig. 4, showing the first five rotational
levels in the ground and first vibrational states (n = 0 → 1). Show, using arrows as in
Fig. 4, all of the transitions allowed between these states (and only these transitions), and
label each transitions with the P, R notation.

(g) An estimate of the J = 0 transition energy can be obtained from the average of the R(0)
and P(1) transition energies. If this corresponds to 8.66×1013 Hz, using your result from
(d), calculate the value of the spring constant k for the HCl bond.

Data: Atomic mass of hydrogen is 1.0078 u
Atomic mass of chlorine-35 is 34.9688 u
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Qu 3. Diffraction

Write you answer starting on a new page for this question.

Huygens’s wave theory states that each point on a wavefront can be treated as a secondary
point source. A wavelet (a circular ripple) spreads out from each point and the new wavefront is
formed by drawing a smooth line through all the fronts of these wavelets (an envelope enclosing
all the wavelets). i.e. the superposition of all the smaller diverging wavelets emitted by the
oscillating particles will form a new wavefront. This is illustrated in Fig. 5 below.

Figure 5: A set of points on a wavefront acting as sources for secondary wavelets with an envelope
constructed to form a new wavefront.

Credit By Arne Nordmann (norro) - Own illustration, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1944668

(a) Consider light diffracting through a single slit of width s0 which is illuminated by a plane
wavefront of uniform intensity and at normal incidence. We can determine the positions
of the minima in a single slit pattern incident on a distant screen by considering the plane
wavefront entering the slit to be constructed of a very large number of secondary points
sources, each emitting circular wavelets (of light). In Fig 6 are shown two “emitted
waves”.

(i) Comment on the relation between these two rays and the secondary sources in the
slit emitting wavelets.

(ii) At a certain angle, the path difference between rays emitted from the centre of the
slit and the edge of the slit is λ/2. Explain why the intensity of light falling on the
screen in this direction is zero.

To distant screen

Emitted waves

θ

s0

Figure 6: The path of two rays in the diffraction of light through a single slit.

(iii) By splitting the slit into 1, 2, 3, . . . parts and pairing up the rays, deduce all angles,
θ, for which the intensity of light falling on the screen is zero.
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(iv) For a screen a distance D away, where D � s0 � λ, deduce the fringe spacing of
the diffraction pattern and the width of the central maximum.

(b) Finding the intensity of light on the screen as a function of angle θ.

(i) Explain why the total (superposed) wave emitted by the slit at any angle will
oscillate in phase with the wave travelling from the point at the very centre of the
slit.
You might consider the secondary sources in the slit emitting waves which have the
form ofA cos(ωt+φ(δs)) where φ(δs) represents the phase of a wave emitted from
a point a distance δs from the centre of the slit and in the plane of the slit.

(ii) Consider a wave incident on the slit with an amplitude dependent upon δs, taking

the form A(δs) =
A0

s0
δs, where A0 is the amplitude at the centre.

i. Sketch a graph of the amplitude of the wavefront from one side of the slit to
the other.

ii. Sketch a graph of the intensity of the wavefront from one side of the slit to the
other.

iii. Now taking a fixed amplitude A0 across the slit, independent of δs, Show that
the intensity of radiation as a function of θ, where θ is the angle measured from
the centre line normal to the slit, is given by

I(θ) = I(0)
sin2

(
πs0
λ sin θ

)(
πs0
λ sin θ

)2 (1)

Hint: Choose a point in time when the ‘height’ of the wave emitted from the
centre of the slit is maximised.

The limit of
sin2 x

x2
for x = 0 is 1.

(c) Numerical results for I(θ).

(i) Light from a red laser of wavelength 628 nm is normally incident on a single slit of
width 20µm after which the light strikes a screen 1.00 m away. Find the distance,
on the screen, from the centre of the diffraction pattern to the brightest point of the
first order maximum.
Hint: The brightest spots are not directly in the middle of the two adjacent minima.
You may assume that the first non-zero positive solution to the equation x = tanx
is, to four significant figures: x = 4.4934

(ii) Find the ratio between the zeroth and first order maxima. At which order maximum
does this ratio fall below 1%?
Hint: Assume that for n ≥ 2 the brightest point of a maxima falls roughly in the
middle of the adjacent minima.
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Qu 4. Free Electron Model of Conduction in Metals

Write you answer starting on a new page for this question.

This question is about conduction in a metal. Data on the metal sodium can be found at the
end of the question. (Sodium has one free electron per atom for conduction.)
Conduction in metals can be usefully discussed in terms of the free electron model. We can
consider “free” electrons that move with complete freedom throughout a metallic solid, subject
only to reflection at the inside surface of the conducting body. Classically the electron has a
large random thermal motion with a superimposed systematic drift due to an electric or thermal
gradient in the metal.

(a) If we consider the electron gas to have a classical gas distribution of velocities, using the
kinetic interpretation of temperature, evaluate the RMS velocity of an electron at room
temperature (300 K). This is equivalent to the thermal speed, vth.

(b) If an electric field E is applied to the conductor the electrons will drift in the opposite
direction to E. This drift velocity vd is lost due to random collisions of the electrons with
the ion lattice, so that the average drift velocity is zero immediately after any scattering
collision.

(i) Sketch a schematic graph of vd against t for an electron in the field E.

(ii) Calculate the average drift velocity of an electron in a sodium wire of cross sectional
area 1 mm2 with a current of 1 A flowing.

(iii) Sketch a path of such a conduction electron as it travels along the wire

(iv) Calculate a value for the distance travelled parallel to the field, xd in time τm.

(c) The resistivity of a metal, ρ is also often cited in terms of the electron mean free path,
the distance λ = vthτm that any electron moves by virtue of its thermal speed during the
mean free time between collisions with the lattice ions, τm. Derive an expression for the
resistivity of a metal, in terms of e, λ, n, kB,me, T .

(d) The temperature dependence of the resistivity of a metal is obtained in this result. How
does this dependence compare with the typical temperature dependence of ρ for metals
at room temperature?

(e) Using the conductivity σ = 1/ρ for sodium, and the data given at the end of the question,
calculate the mean free path of an electron in sodium at room temperature.

It is clear that this model of conduction gives the wrong temperature dependence, and including
a distribution of electron velocities as for a gas does not correct the difficulty.
To glimpse an approach to a quantum model, we treat the electron as a standing wave with
a de Broglie wavelength in a closed container (analogous to sound waves in a closed pipe).
An electron is trapped in the metal conductor in a state represented by a standing wave with
nodes at the faces. The states form energy levels in the solid (like energy levels in an atom), as
illustrated in Figure 7. Due to a quantum mechanical effect (the Pauli Exclusion Principle) at
most two electrons can occupy a single energy level: the next two electrons fill the next energy
level, etc.

(f) If we take energy levels as determined by de Broglie waves with nodes at the surface
of the metal, sketch the waves corresponding to the lowest three energy levels for six
electrons trapped in a one dimensional potential well of width `.
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Figure 7

(g) In a 3-D cube of metal of side `, the energy levels are filled up to an energy EF by N
electrons. Show that the number of energy levels filled up by N electrons is given by
EF = h2

8`2me

(
n2
x + n2

y + n2
z

)
, where nx, ny, nz are the labels of levels below filled by

electrons.

If we let (n2
x + n2

y + n2
z) = n2

max then all of the levels are filled up to nmax, which corresponds
to a radius in an octant of a sphere in a space of radius nmax (the n’s are only positive values),
as shown in Figure 8. Thus at temperature T = 0 K all N conduction electrons in a cube of
side ` occupy L levels, given by

L =
1

8

(
4πn3

max

3

)

��  

��  

��  

����  

Figure 8

(h) Derive an expression for EF in terms of h,me, N and volume V = `3.

(i) Hence obtain a numerical value for EF for sodium in units of eV.

At a temperature T > 0 K only the states near EF can supply conduction electrons, electrons
in the lower states being fixed in their energy levels by the electrons above. (There are no
empty states for these lower electrons to scatter into). This leads to a disconnect between the
temperature and the classical thermal energy of the electrons.

(j) The Fermi speed, vF is defined by 1
2
mv2F = EF, and the mean free path is now given by

λ = vFτm.

(i) Calculate the value of λ for these scattered conduction electrons at the the Fermi
energy.
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(ii) How many atomic sodium diameters does this length correspond to? (assume a
simple cubic packing structure for sodium to calculate a diameter).

(k) Calculate the derivative
(

dn

dE

)
at EF. Hence calculate the energy separation of two

states at E = EF. It may be concluded that we may consider the energy to be virtually
continuous for these conduction electrons.

Data for sodium at room temperature:

Sodium has one free electron per atom for conduction.

conductivity σ = 8.7× 107 m Ω−1

electron ion number density n = 2.9× 1028 m−3

density ρm = 0.971× 103 kg m−3

molar mass M = 23.0 g mol−1

END OF PAPER
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Questions proposed by:
Dr James Bedford (Harrow School)
Dr Benjamin Dive (Austrian Academy of Sciences)
Robin Hughes (British Physics Olympiad & Isaacphysics.org)
Josh Brown (Trinity College, Cambridge)
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