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Round 2 Competition Paper
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Instructions

Time: 3 hours.

Questions: All questions should be attempted.

Marks: The questions carry similar marks.

Solutions: Answers and calculations are to be written on loose paper. Students should ensure
their name and school is clearly written on all answer sheets. Begin each question on a new
page. Pages must be numbered. A standard formula booklet with standard physical constants
may be used.

Instructions: Please do not discuss any aspect of the paper on the internet until 8 am Saturday
13th March.
Clarity: Solutions must be written legibly, in black pen, and working down the page. Scribble
will not be marked and overall clarity is an important aspect of this exam paper. Diagrams
should be used.

—————�——————�—————–�——————�——————�———–

Training Dates and the International Physics Olympiad

Following this round, the best students eligible to represent the UK at the International
Physics Olympiad (IPhO) will be invited to attend the Training Camp to be held online his
year, (Tuesday 6th April to Saturday 10th April 2021). Problem solving skills will be
developed, practical skills enhanced, as well as some coverage of new material
(Thermodynamics, Relativity, etc.). Five students (and possibly a reserve) will be selected for
further training. From May there will be mentoring by email to cover some topics and
problems.
The IPhO this year will be held in Vilnius, Lithuania, from 17th to 25th July 2021.



Important Constants

Constant Symbol Value

Speed of light in free space c 3.00× 108 m s−1

Elementary charge e 1.60× 10−19 C

Acceleration of free fall at Earth’s surface g 9.81 m s−2

Permittivity of free space ε0 8.85× 10−12 F m−1

Permeability of free space µ0 4π × 10−7 H m−1

Mass of an electron me 9.11× 10−31 kg

Mass of a neutron mn 1.67× 10−27 kg

Mass of a proton mp 1.67× 10−27 kg

Radius of a nucleon r0 1.2× 10−15 m

Planck’s constant h 6.63× 10−34 J s

Gravitational constant G 6.67× 10−11 m3 kg−1 s−2

Boltzmann constant k 1.38× 10−23 J K−1

Molar gas constant R 8.31 J mol−1 K−1

Specific heat capacity of water cw 4.19× 103 J kg−1 K−1

Mass of the Sun MS 1.99× 1030 kg

Mass of the Earth ME 5.97× 1024 kg

Radius of the Earth RE 6.38× 106 m



Qu 1. General Questions

(a) The bottle below is filled to the brim with salad dressing made from oil and vinegar. The
bottle is shaken before being left to stand, whereupon it is observed that the oil slowly
separates and rises to the top. Is the pressure on the bottom of the bottle now the same,
greater or less than before? Explain your reasoning carefully.

Figure 1: Credit IndiaMART Glass 200ml Milk Bottle [5]

(b) Table 1 shows the timetable of a passenger boat on the River Rhine.

Time Town Time Town Position along the river /km

1700 St Goarhausen 1851 St Goarhausen 642

1830 Bacharach 1801 Bacharach 659

Table 1: Rhine cruise timetable

Obtain a numerical estimate of the speed of the Rhine current and the speed of the boats
in still water. N.B. the position markers follow the river Rhine, indicating the distance
along its course from a zero marker. [5]

(c) Estimate the work done in inflating a bicycle tyre. Provide your own approximate data and
work in SI units. [5]

(d) A sodium salt is heated in a flame at a temperature of 1500 K and the sodium line of
wavelength 590 nm is observed. Calculate the spread of wavelengths assuming that all
the molecules move with the same speed.
Mass number of sodium is 23. [5]

(e) A thick walled flask has an outer surface which is a sphere of radius 10 cm and an inner
surface which is also spherical and concentric with the outer. When it is filled with an
opaque liquid and held up against a diffuse source of light, the flask looks black all over.
Is the flask able to contain 1 litre of liquid?
1 litre = 1000 cm3 [5]

[25 marks]
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Qu 2. Proton Decay

Proton decay is a hypothetical form of particle decay in which the proton decays into lighter
subatomic particles. One possible decay mode, common to many models (including Grand
unified Theories and String Theories), is into a positron and a neutral pion: p→ e+ + π0. The
masses of these particles, expressed in units of MeV/c2 where c is the speed of light in vacuo,
are: mp = 938 MeV/c2, me = 0.511 MeV/c2 and mπ = 135 MeV/c2. As with radioactive
decay the rate of decay is presumed to be proportional to the number of undecayed protons in
a given sample.

(a) Show that N = N0e
−λt, where N is the number of undecayed protons at time t, N0 is the

number at time t = 0 and λ is a constant called the decay constant. [2]

(b) By considering the number of protons, dN , that decay in time dt:

(i) Show that the probability, dP for a proton to decay in this time can be expressed as
dP = λe−λt dt. [2]

(ii) Show that all the probabilities (from t = 0 to t =∞) sum to 1 as expected.
[1]

(iii) Show that the probability that a proton remains undecayed after time t is given by
p(t) = e−λt. [2]

(iv) Show that the mean time taken for a proton to decay, τ , known as the mean lifetime
of the proton, is given by τ = 1/λ.

Hint: The mean of a quantity, f(t), is given by

〈f(t)〉 =

∫∞
0
f(t)p(t) dt∫∞
0
p(t) dt

You may assume, without proof, the standard integral∫ ∞
0

xe−x dx = 1

[2]

(c) The average heat outflux through the surface of the Earth is Q = 92 mW m−2.

(i) Assuming that this outflux is produced entirely by proton decay, estimate a lower
bound for the proton’s mean lifetime.

[4]

(ii) Why is this a considerable underestimate? [1]
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(d) The Super-Kamiokande detector in Japan is currently the largest detector for the
observation of proton decay. It consists of a tank containing 50, 000 tons of ultrapure
water with about 13,000 photomultiplier tubes, covering about 40% of the area around
the tank that detect Cherenkov radiation produced by the movement of charged particles
through the water.

(i) Assuming the detectors are 100% efficient, how long would you have to wait, on
average, to observe one proton decay. [4]

(ii) How many decays would you expect to observe per year, on average?
[2]

(iii) The detection process for such decays can be modelled using Poisson statistics
where the probability of observing k decays per year, p(k), is given by

p(k) =
µke−µ

k!

with µ the average number of decays per year. So far, no convincing proton decays
have been observed. What would be the probability of not observing any decays in
a year and what would this mean for the lifetime you calculated in (c) (i)?

[3]

(e) Assuming that any proton decay occurs via the process p → e+ + π0, with the proton
decaying while at rest, determine the energies and speeds of the positron and neutral
pion produced. Hint: The energy, E, of a particle of rest mass m and momentum p

(velocity v) is given by E2 = p2c2 +m2c4 with p = γmv and γ = 1/
√

1− v2

c2
.

[3]

[26 marks]
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Qu 3. Orbits

This question is about the mechanics of circular and elliptical orbits. Consider a satellite of
mass m in orbit around a planet of mass M such that it is in free fall and sufficiently far from
the planet to be able to ignore atmospheric effects. The point of closest approach (perigee) is
at a distance rp from the centre of the planet and the highest point in the orbit (apogee) is at a
distance ra from the centre of the planet.

(a) As the orbit is not circular, the equation F = mv2/r does not apply at any point in the
orbit. However, at the apogee and perigee the velocity vector is perpendicular to the
gravitational force. Hence the angular momentum (= mrω where ω is the angular
velocity) is constant and at those two points is simply equal to mvara = mvbrb.

Use this with the conservation of energy (kinetic + gravitational potential) to derive
Newton’s vis viva equation (eq. 1) to find the velocity at any given radius of orbit on the
ellipse:

v2 = GM

(
2

r
− 1

a

)
(eq. 1)

where a = (ra+rp)/2 , the semi-major axis of the ellipse, ra = a(1+e) and rp = a(1−e),
where e is the eccentricity. Note: the largest diameter of an ellipse has a length 2a so that
a is the length of the semi major axis. [4]

(b) In order to escape from orbit, the satellite undergoes a single short burn at a specific point
in the orbit which gives it a new orbit with infinite semi-major axis. That burn creates a
velocity change ∆v which is a figure of interest to engineers as it is essentially
proportional to the amount of fuel burnt in a given manoeuvre.

(i) Find expressions for the necessary ∆v to reach escape velocity from apogee (∆va)
and perigee (∆vp). [5]

(ii) Hence show that the ratio:

∆va
∆vp

=

√
2(1− e)− (1− e)√
2(1 + e)− (1 + e)

[2]

(iii) Recalling that, for an ellipse, 0 < e < 1 , show that it requires a greater velocity
change to launch a satellite into escape orbit from apogee than from perigee - this
may be counter-intuitive! [2]

In order to change from one circular orbital radius (r1) to another (r2) in the same orbital plane,
a very efficient way is to use the two-burn Hohmann transfer. A brief burn is applied at one
point in the orbit which makes the orbit elliptical. The first burn point is the perigee of the
ellipse. On reaching the apogee, a second burn is applied to give the necessary velocity to
make a circular orbit at the new height.
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(c) Show that the velocity changes at perigee and apogee are given by:

∆vp =

√
GM

r1

(√
2r2

r1 + r2
− 1

)
and

∆vp =

√
GM

r2

(
1−

√
2r1

r1 + r2

)
[5]

(d) For a given initial orbit r1, the total ∆v = ∆va + ∆vp will vary with r2.

By differentiation with respect to r2, keeping r1 fixed, show that the maximum value of
∆v occurs for the positive root of the equation

x3 − 15x2 − 9x− 1 = 0

Where x = r2/r1. This root has the approximate value of 15.6.

In other words, it requires more energy to place the satellite in a higher orbit than it does
to remove it to escape velocity, another counter-intuitive result! [4]

[22 marks]
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Qu 4. EM Waves

A travelling electromagnetic wave consists of oscillating electric and magnetic field
components at right angles to each other. For the purposes of this question we shall consider
just the electric part which may be written,

Ez = Ez0 sin 2π
(x
λ
− ft

)
(eq. 1)

for a wave travelling in one dimension towards the positive x direction, with wavelength λ and
frequency f :
Here the electric field is assumed to be in the z direction i.e. the wave is plane-polarised.
To simplify the algebra we shall use the wave number, k = 2π/λ, and angular frequency,
ω = 2πf allowing us to rewrite (eq. 1) as:

Ez = Ez0 sin (kx− ωt) (eq. 2)

(a) Considering the variables x and t explain how this equation describes a travelling
(progressive) wave.

By considering the substitutions x → x + ∆x and t → t + ∆t, show how the direction
and speed of propagation of the wave is determined from (eq. 2). [3]

(b) Write down the equation for an identical wave travelling in the opposite direction and show
that the superposition of the two creates a standing wave of the form:

E
′

z = E
′

z0 sin kx cosωt

State the value of E ′
z0 [3]

(c) A standing wave can be considered as a series of oscillations of frequency ω whose
amplitude varies with position (E ′

z0 sin kx). Find the distance between points of zero
constant displacement (“nodes”) in terms of k and hence in terms of λ. In the late 1880s
Heinrich Hertz used a radio frequency generator at 60 MHz and a spark detector to
measure standing waves created by reflection of the radio waves from a large metal
plate.

(i) Find the spacing of the nodes in his experiment. [1]

By calculating the frequency of the waves from the electrical circuit used to generate
them and the measured wavelength, Hertz was able to calculate the speed of the waves
and show it was consistent with Maxwell’s analysis and that radio waves were
electromagnetic and travelled at the same speed as light.

(ii) Hertz’s waves did not travel in one direction but instead spread out. How would this
affect the standing wave pattern produced by a reflection? [1]
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Figure 2

(d) In 1890, Otto Wiener performed a similar experiment but with light. Light of wavelength
close to 400 nm was incident on a mirror, creating a standing wave. A piece of
photographic film was placed at a small angle, α, (approx 2◦) across the path of the light
as in Figure 2:

In order for Wiener to observe fringes (bands of light and dark) across his film he had to
ensure that the light was monochromatic, the photosensitive film was much thinner than
one wavelength and the the photographic film material was not reflective.

(i) Explain briefly the relevance of these points. [3]

(ii) Find an expression for the spacing of the fringes (dark to dark) in terms of the
wavelength λ and angle α, and estimate the value for the experimental conditions
given. (Hint: 2◦ is approximately 1/30 radian) [2]

(e) Now consider two waves of the same amplitude but with slightly different angular
frequencies, ω1 and ω2 .

(i) Show that, where the waves superpose at some fixed position x where the two
oscillations can be written as

E1
z = Ez0 cosω1t and E2

z = Ez0 cosω2t

then the resultant wave can be written in the form: E ′′z = E ′′z0 cosωat cosωbt
[1]

(ii) Write down the values of E ′′z0 , ωa and ωb [1]

(iii) This phenomenon is known as “beats”. If two light waves whose frequencies
differed by 10Hz were to superpose in this way on a screen what would be
observed? [1]
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(iv) In practice the difference in two visible light frequencies might be approximately
1 MHz. If two light sources 1 MHz apart in frequency (f , not ω ) are incident on a
fast photodiode and the output displayed on an oscilloscope with timebase set to
0.2µs (i.e. 1 small square on the oscilloscope corresponds to 0.2µs), sketch what
would be seen, assuming the display is 10 squares wide. [2]

(v) A researcher wishing to measure the frequency difference can measure on the
oscilloscope to a precision of 1/20 of a square using digital measuring tools built
into the device. Calculate the percentage uncertainty in his measurement of the
frequency difference. [2]

(vi) Estimate a typical visible light frequency in the green part of the spectrum. To how
many significant figures would the two frequencies have to be measured in order to
achieve the same uncertainty in the difference between them? [2]

It should, thus, be evident that a direct measurement of differences through interference
is highly sensitive compared to measuring frequencies directly.

(f) Now consider the typical Young’s slits arrangement. Rather than following the typical
analysis, consider it to be like Wiener’s experiment. The two light waves, rather than
being intercepted at an angle by a film, meet at angle on a screen as in Figure 3 and
produce fringes separated by a distance y.

Figure 3

(i) By considering the two beams with their wavefronts to be coming from the two slits
at an angle to each other, and the wavefronts meeting at the screen (see Figure 4),
find the equivalent of α in terms of a and D and write an expression for y.
Compare it to the standard Young’s slits expression. [2]

(ii) Does the analogy hold perfectly? Consider the line along the middle of the slits -
this is always a bright point in Young’s slits (i.e. where the path difference between
the two beams is zero). In Wiener’s experiment, when the path difference is zero
(where the photographic film just touches the mirror) is a dark point. Explain. [1]
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Figure 4

(iii) Away from the central fringe, any other bright fringe will occur where the path
difference between the two rays is equal to an integer number of wavelengths. Show
that the fringes lie along a hyperbola for D � a. Why is it not true for smaller
values of D? [2]

[27 marks]

END OF PAPER
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