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Instructions

Time: 3 hours (approximately: Q1 40 min, Q2 45 min, Q3 45 min, Q4 50 min).

Questions: All four questions should be attempted.

Marks: The questions carry marks indicated by the times above.

Solutions: Answers and calculations are to be written on loose paper or in examination booklets, and
graph paper should be provided. Students should ensure their name and school is clearly written on all
answer sheets and pages are numbered. A standard formula booklet with standard physical constants
should be supplied.

Instructions: To accommodate students sitting the paper at different times, please do not discuss any
aspect of the paper on the internet until March. This paper must not be taken out of the exam room.
All notes must be collected in.

Calculators: Any standard calculator may be used, but calculators must not have symbolic algebra
capability. If they are programmable, then they must be cleared or used in “exam mode”.

Clarity: Solutions must be written legibly, in black pen (the papers are photocopied), and working down
the page. Scribble will not be marked and overall clarity is an important aspect of this exam paper.



Important Constants

Constant Symbol Value

Speed of light in free space c 3.00× 108ms−1

Elementary charge e 1.60× 10−19C

Acceleration of free fall at Earth’s surface g 9.81m s−2

Permittivity of free space ε0 8.85× 10−12 Fm−1

Permeability of free space µ0 4π × 10−7Hm−1

Mass of an electron me 9.11× 10−31 kg

Mass of a neutron mn 1.67× 10−27 kg

Mass of a proton mp 1.67× 10−27 kg

Radius of a nucleon r0 1.2× 10−15m

Planck’s constant h 6.63× 10−34 J s

Gravitational constant G 6.67× 10−11m3 kg−1 s−2

Boltzmann constant k 1.38× 10−23 JK−1

Molar gas constant R 8.31 Jmol−1K−1

Specific heat capacity of water cw 4.19× 103 J kg−1K−1

Mass of the Sun MS 1.99× 1030 kg

Mass of the Earth ME 5.97× 1024 kg

Radius of the Earth RE 6.38× 106m
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Qu 1. General Questions

(a). Air bubbles in water are observed to rise towards the surface at different speeds according to their
initial size. Use your knowledge of physics to suggest an explanation.

(b). Walking out of the front door on a cold, frosty morning, two effects are observed outside.

(i) A nail, hammered in to the wooden gate, has a splay of ice crystals growing from it, shown
in Fig. 1. With a few brief statements, suggest a possible explanation of this effect.

Figure 1: Ice crystals formed on a nail in a wooden fence on a frosty morning.

(ii) The windscreen of a car has a pattern on it, as in Fig. 2, which is not scratches on the glass,
but ice. Again, with a few brief statements, suggest a possible explanation of this effect.

Figure 2: Ice crystals forming a pattern on the windscreen of a car on a cold, dry morning.

(c). Estimate the number of peas (the small, green edible vegetable) that are consumed in the UK in a
year.

(d). A voltage amplifier of the type known as an op-amp consists of an integrated circuit constructed
from many elements (transistors, resistors, etc.). Its internal workings are unimportant in this
question. It is symbolised by a triangle with two inputs and an output, as shown in Fig. 3. It has a
dc power supply to enable it to work, but that is not shown. The signal input terminals are labelled
+ and −, which is a notation and not the polarity of voltage supplied. They are respectively the
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Figure 3: op-amp.

non-inverting input and the inverting input. We will assume a perfectly adjusted op-amp in order
to make the following simplified statements.

• If the two inputs are connected together, the output is 0V.

• If the inverting input (-) is set to 0V then a small voltage, Vin, applied to the non-inverting
input (+) will produce an output voltage A0Vin where A0 is the open-loop gain and A0 ≫ 1
(A0 is typically of order 105 − 106). If Vin is not small, then the output will saturate at the
supply voltage and not at A0Vin.

• If the non-inverting input (+) is set to 0V, and a small voltage Vin is applied to the inverting
input (-) then the output voltage will be −A0Vin.

Three examples are shown in Fig. 4. The op-amp is rarely used in this simple manner as the A0 is

Figure 4: Three op-amp examples of the input and output values.

large but not known precisely. So usually, a small fraction of the output signal is fed back to the
input and, as we shall see, this controls the gain of Ag of the circuit (A0 is for the op-amp alone).

(i) In the circuit shown in Fig. 5, we can assume that negligible current enters the inverting
terminal.

i. Copy the circuit and sketch the path of the current i that flows into the circuit at Vin

through the pair of resistors to Vout.
ii. Given that the non-inverting input is at 0V, and that the (small) potential at the inverting

input is given by v = −Vout

A0
, obtain equations for the current i flowing through Rin in

terms of Vout, Vin and A0, and the same current i through Rf in terms of these quantities.
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iii. Eliminating the current i between these
two equations, obtain an expression for

Ag =
Vout

Vin
.

iv. For A0 ≫ 1, obtain an expression for
Ag in terms of Rf and Rin.

Figure 5: Inverting amplifier circuit with feedback from
the output to the inverting input.

(ii) For the non-inverting amplifier of Fig. 6 the non-inverting input is now at Vin whilst the
inverting input is again at potential v given by Vout = A0(Vin − v). A current i flows from
the output down to 0V with no current entering the inverting input.

i. Write down equations for the current i
flowing through R1 and R2 in terms of
Vout, and the same current through R2

in terms of v.

ii. Eliminating the current i between these
two equations, obtain an expression for

Ag =
Vout

Vin
.

iii. For A0 ≫ 1, obtain an expression for
Ag in terms of R1 and R2 only.

Figure 6: Non-inverting amplifier circuit with feedback from
the output again to the inverting input.

(iii) In the following circuit, we assume that A0 ≫ 1 and so v is small enough that the two
inputs can be taken to be the same value and v ≈ 0, and also that no current enters the
op-amp inputs (these are the two “Golden Rules” for op-amps).

For the circuit of Fig. 7 a current i flows through Rin and onto the capacitor when switch S
is opened at time t = 0. No current enters the inverting input.

i. Obtain equations for the current i in
terms of Rin and Vin, and then the
charge Q on the capacitor in terms of C
and Vout.

ii. Obtain a differential equation
dVout

dt
which can then be expressed in terms of
Vin, Rin and C. Solve this for Vout in
terms Vin.

iii. Sketch a graph of Vout against time, t. Figure 7: Circuit with feedback via a capacitor
to the inverting input.
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Qu 2. Energy Levels

This question explores energy levels in atoms. The model is interesting both from a historical perspective
and as an example of where classical physics meets quantum physics.

(a). In a simple model of the hydrogen atom due to Bohr and de Broglie, electrons are assumed to
follow circular orbits around the nucleus with the wave-like nature of electrons manifest as
resonant states or standing waves around a closed orbit, with the number of half-wavelengths
given by the integer, n. This model of the orbits is illustrated in Fig. 8.

Figure 8: Bohr orbits, pictured as standing waves of an electron in a closed orbit around the nucleus.

(i) Sketch the n = 3 example shown and referring to your sketch, comment on what determines
the value of n.

(ii) By considering the electron simply as a particle of mass m and charge e orbiting the nucleus,
derive an expression for the total energy of the system, E, in terms of the radius of the orbit
of the electron around the nucleus, r

The energy of the electron in its orbit is dependent upon r, but there is no restriction on the value
of r or of E. Now, if we consider the electron as a de Broglie wave,

(iii) show that the wave-like nature illustrated in Fig. 8 leads to the quantisation condition

rp = n
h

2π

where p is the momentum of the electron.

(iv) Determine the radius of the hydrogen atom that this predicts when n = 1. Does it seem
sensible?

(v) Determine the energy levels of atomic hydrogen, En, in this model. Calculate the ground
state energy in eV.

(b). In a slightly improved model, the electron and nucleus orbit their common centre of mass.

(i) Show that the electron and nucleus orbit with a common angular velocity, ω, and find an
expression for ω in terms of r, the separation of the electron from the nucleus, and µ, the
so-called ‘reduced mass’

µ =
mM

m+M

with m the mass of the electron and M the mass of the nucleus.

(ii) The quantity rp in (a).(iii) is the angular momentum of the electron. This is the ‘moment of
momentum’ about the orbital centre. A generalisation of the quantisation condition arrived
at previously has the total (sum of) angular momentum of the electron and nucleus quantised

in units of
h

2π
. Calculate the lowest two energy levels of both atomic hydrogen and atomic

tritium in this model.

(iii) Which of hydrogen and tritium would absorb a shorter wavelength of light for a given atomic
transition? What is the difference between the two wavelengths?
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Qu 3. Party balloons

(a). Explain why a heavy balloon inflated with helium-4 gives a lower reading on an accurate weighing
scale than the same balloon when deflated, despite having a larger mass.

A party balloon of mass 10 g is inflated with helium-4.

(b). Show that, under typical atmospheric conditions, the volume of the balloon V should satisfy
V ≳ 1.0× 10−2m3 if it is to float.

The balloon is initially inflated to a volume V0 = 2.0×10−2m3, then released. It floats up gently before
coming to rest on the ceiling. Unfortunately, there is a leak, and the balloon slowly deflates through a
very small hole of area A.

(c). Show that the root mean-square momentum Prms of a particle in a pure ideal gas of temperature T
is

Prms =
√
3mkT ,

where m is the particle mass. Hence reason why the typical momentum in any given direction is

P =
√
mkT .

(d). The pressure of a gas can be loosely thought of as the total momentum flowing through unit area
per unit time. Making the approximation that all particles travelling in a given direction have
momentum P , explain why N , the number of atoms of helium-4 in the balloon, decreases over
time as:

dN

dt
= − pA√

mkT
.

(e). Hence obtain an expression for the rate of change of the volume,
dV

dt
, in terms of A, k, T,m.

(f). If after 1 hour the balloon has shrunk by 5% in volume, estimate the time until the balloon drops
back to the floor, and estimate the area of the leaky hole. How does this compare to the initial
surface area of the balloon?

(g). Suggest why the model presented above would break down if the hole was made significantly
larger.

(h). The balloon was itself filled from a rigid, pressurised cylinder of helium-4 of fixed volume v. If
this cylinder also develops a small leak (of area a), derive an algebraic expression for the gas
pressure inside the cylinder as a function of time. Take the initial pressure to be p0. No numerical
calculations are needed.

7



Qu 4. A Space Elevator

This question explores the idea of a space elevator for reaching a high altitude orbit such as a
geostationary one.

When considering the physics of rotating objects, a helpful way to analyse the motion can be to transform
to a frame of reference which is rotating with the object, and in which the object is therefore (in the
simplest case) at rest. When an object of mass m is at rest in this frame of reference, and the reference
frame is rotating uniformly with angular velocity ω, the transformation to this frame gives rise to a
fictitious ‘centrifugal’ force equal to mrω2, where r is the distance of the mass from the axis of rotation.
The force is centrifugal in that it is directed away from the axis of rotation rather than towards it. To
handle the laws of motion in such a rotating frame, simply treat the fictitious forces like real forces and
go about things as usual!

(a). Find an expression for the orbital time period for a satellite of mass ms orbiting at a distance rg
from the centre of the earth. Calculate the radius of the orbit of a geostationary satellite.

(b). A mass m is to be kept in orbit at a radius rg + r′ (r′ ≪ rg) as shown in the diagram below.
What extra force is required to do this over and above the gravitational force. Determine both its
magnitude and direction.

rg r′

m

elevator

(c). An elevator is hung from the mass m as shown in the diagram above and reaches all the way down
to the surface of the earth. Modelling the elevator as a thin rod with mass per unit length µ, show
that for the elevator plus mass to maintain the same geostationary orbital period then the mass
must (taking the radius of a geostationary orbit to be very much bigger than the radius of the
earth) be given by

m =
µr3g
3rer′

where re is the radius of the earth.

(d). Using reasonable estimates for µ and r′, comment on the viability of this proposal using standard
materials.
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(e). Contemplate instead a ‘free-standing’ elevator without a counterweight, modelled as a uniform
cable whose ends require no restraint. Again the cable rotates with the earth. Consider the net
stress dσ on an element of cable dr with cross-sectional area A at a distance r from the centre of
the earth. Show that

dσ

dr
= Gmeρ

(
1

r2
− r

r3g

)
where ρ is the mass density (by volume) of the cable and me is the mass of the earth.

(f). What is the largest tensile stress in the cable and at what radius does it occur? Compare this for the
three different materials in the table below and comment on your findings.

Material Density /kgm−3 Maximum tensile stress⋆ /GPa

Steel 7900 5.0

Kevlar 1400 3.6

Carbon nanotubes 1300 130

⋆ Safe practice typically dictates that materials are not subject to stresses of more than half their
maximum.

(g). A different design of elevator is one where the stress is held fixed (at a safe value) and instead the
cross-sectional area varies. Show that in this setup the cross-sectional area is given by

A(r) = Ab exp

[
r2e
Lc

(
−1

r
− r2

2r3g
+ k

)]

where k is a constant to be determined, Ab is the area at the base of the elevator and Lc = σ
ρg

(with g the acceleration due to gravity at the surface of the earth) is the ’characteristic length’ of
the elevator material. What is the maximum area and at what radius does it occur?

(h). For a realistic construction, the ratio between the area at ground level and the maximum area should
not be too large. Determine this ratio (known as the ‘taper ratio’) for the materials given above
(for a suitable stress) and comment on your findings.

(i). Assuming a symmetrical construction of the variable area elevator, calculate its height and compare
the value you obtain with the height of the setup in (e).

END OF PAPER

Questions proposed by:
Rupert Allison (Harrow School)
James Bedford (Harrow School)
Robin Hughes (Isaac Physics & BPhO)
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