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General guidelines for marking

• Granularity for marks is 0.1 p.
• A simple numerical error resulting from a typo is punished by
0.2 p unless the grading scheme explicitly says otherwise.

• Errorswhich cause dimensionallywrong results are punished
by at least 50% of themarks unless the grading scheme explic-
itly says otherwise.

• Propagating errors are not punished repeatedly unless they
either lead to considerable simplifications or wrong results
whose validity can easily be checked later.

T1: Floating cylinder

Solution I: energetic approach

Denote the density of the liquid by ϱ, so the density of the cylin-
der is γϱ. In equilibrium (i.e. when the net force acting on the
cylinder is zero) the immersed part of the cylinder has height
γh.

Consider the system in a moment when the cylinder is dis-
placed by distance x1 downward and moves down with veloc-
ity v1. As a result of the motion of cylinder the liquid level rises
by some height x2, and the liquid flows in the gap between the
cylinder and beaker with some velocity v2 upwards (see Fig. 1).

Fig. 1

The relationbetween the aforementioneddisplacements andve-
locities are given by the continuity law:

x1s = x2(S − s), v1s = v2(S − s) .

In the following we express the potential and kinetic energy of
the system. Compared to the equilibrium position the cylinder
of mass γϱsh sunk by x1, while the potential energy change
caused by the redistribution of liquid can be imagined as the
center of mass of liquid with mass ϱsx1 rises by distance γh+
x1/2 + x2/2 . Taken the potential energy in the equilibrium
state to be zero, the potential energy in the state indicated in the
right figure can be written as

Epot = −γϱshgx1 + ϱsx1g

(
γh+

x1 + x2
2

)
.

After opening the bracket the first two terms cancel each other:

Epot =
1

2
ϱsgx1(x1 + x2) .

After expressingx2 fromcontinuity lawand some simplification
we get a quadratic expression for the potential energy:

Epot =
1

2
ϱsgx1

(
x1 +

s

S − s
x1

)
=

1

2
ϱ

sS

S − s
gx21 .

Now let us calculate the kinetic energy of the system. The con-
tribution from the cylinder is straightforward, γϱshv21/2, but
the motion of the liquid is more complicated.

Note. We may notice that since s/(S − s) = 50, the speed v2 of
the liquid in the narrow gap is 50 times larger than the typical speed
of the liquid below the cylinder (which can be estimated to be in the
range of v1). And while the mass of the liquid below the cylinder is
much larger than themass of liquid inside the gap (the ratio is ca. 25 if
the „few centimeters” in the problem text is taken to be 3.5 cm), the ki-
netic energy is proportional to the square of the velocity, so the kinetic
energy of the liquid inside the gap is roughly 100 times larger than the
kinetic energy of the liquid below the cylinder.

Since the kinetic energy of the liquid below the cylinder is
negligible, we can write the total kinetic energy of the system
as:

Ekin =
1

2
γϱshv21︸ ︷︷ ︸
cylinder

+
1

2
ϱ(S − s) (γh+ x1 + x2) v

2
2︸ ︷︷ ︸

liquid

.

Here x1, x2 ≪ γh, so we shall keep only the term containing
γh in the second bracket:

Ekin =
1

2
γϱshv21 +

1

2
ϱ(S − s)γhv22

Expressing v2 from continuity law gives the following:

Ekin =
1

2
γϱshv21 +

1

2
ϱγh

s2

S − s
v21 =

1

2
ϱγh

sS

S − s
v21 .

The potential and kinetic energies can be written in the form

Epot =
1

2
keff x

2
1 , Ekin =

1

2
meff v

2
1 ,

where the effective spring constant and effectivemass are given
by

keff = ϱ
sS

S − s
g , meff = ϱγh

sS

S − s
.

So the oscillation is indeed harmonic, thus the angular fre-
quency and the period are:

ω =

√
keff
meff

=

√
g

γh
, T = 2π

√
γh

g
= 0.53 s .

Note. The static restoring force, acting on the cylinder is due to the
change (relative to the equilibrium position) of the hydrostatic pres-
sure at its lower base:

F = −sρg(x1 + x2) = − sS

S − s
ρgx1.

This immediately gives effective stiffness of the system keff = sS
S−sρg.

Alternatively, onemaywish to integrate
∫
Fdx1 to get the potential

energy

Epot =
sS

S − s

ρg

2
x2
1.
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Solution II: dynamical approach

When the cylinder is displaced from its equilibrium position
downwards by distance x1, the net restoring force (pointing up)
can be calculated as the sum of the weight of the cylinder and
the force from the difference of pressures at the top (p0) and bot-
tom (p) of the cylinder. As a result of the net force, the cylinder
accelerates upwards with a1, and at the same time, the liquid lo-
cated in the gap between the cylinder and the wall of the beaker
accelerates downwith a2. The relation between themagnitudes
of a1 and a2 is given by the continuity law:

sa1 = (S − s)a2 .

Fig. 2

If the liquid in the gap was not accelerating, the pressure differ-
ence p − p0 would be equal to the hydrostatic pressure of the
liquid column in the gap. Due to the acceleration of the liquid,
p− p0 can be expressed from Newton’s 2nd law applied for the
liquid column of unit area located in the gap:

p0 − p+ ϱg(γh+ x1 + x2) = ϱ(γh+ x1 + x2)a2 ,

where we used the notations of Solution I, and the downward
direction was taken as positive.

Newton’s 2nd law for the cylinder reads as

(p− p0)s− γϱshg = γϱsha1 .

After expressing p − p0 from the previous equation, and then
substituting it here we get:

ϱg(γh+x1+x2)s−ϱ(γh+x1+x2)a2s−γϱshg = γϱsha1 .

Since the amplitude of the liquid level is small, the terms con-
taining a2x1 and a2x2 can be neglected. After rearranging we
get:

ϱgs(x1 + x2) = γϱsh(a1 + a2) .

Using the relations between the displacements and accelera-
tions we finally get:

a1 =
g

γh
x1 .

Taking into account the opposite directions of x1 and a1, this
is the dynamical condition of a simple harmonic motion with
angular frequency and period

ω =

√
g

γh
, T = 2π

√
γh

g
= 0.53 s .

Note. In this solution we assumed that the pressure p is constant
throughout the bottom surface of the cylinder. This assumption is
equivalent with saying that the horizontal acceleration of the liquid
below the cylinder at every point is much smaller than a2, which is
reasonable.

Marking scheme

All solutions should be graded according to only one marking scheme
(either energetical or dynamical). If the student used both ideas, that
marking scheme should be used which results in a higher score.

Solution I: energetic solution pts
i Height of submerged part of cylinder in equilib-

rium is γh.
0.5

ii Realizing that the kinetic energy of water is impor-
tant

1.0

iii Realizing that the kinetic energy of liquid below the
cylinder is negligible

1.5

iv Expressing the kinetic energy of liquid inside the
gap as a function of velocity of cylinder.

2.5

v Potential energy change of liquid as a function of
the small displacement of cylinder

1.0

vi Potential energy change (0.5 p) and kinetic energy
change of cylinder (0.5 p)

1.0

vii Continuity law either for displacements or veloci-
ties (only 0.5 p if the factor is S/(S − s))

1.0

viii Expressing ω from the formulas for Epot and Ekin

(ω =
√
keff/meff or equivalent).

1.0

ix T = 2π/ω 0.3
x Correct substitution of values, final result 0.2

Total number of points 10.0

Solution II: dynamical solution pts
I Height of submerged part of cylinder in equilib-

rium is γh
0.5

II Realizing that the pressure difference between top
and bottom of the cylinder is not ϱg × height diff.

1.0

III Neglecting the motion of water below the cylinder
but not on the sides

1.5

IV Newton’s 2nd law for liquid in the gapwith nonzero
acceleration. (0 p for p− p0 = ϱg × height diff.)

2.5

V Newton’s 2nd law for cylinder (still full mark if II
was not realized but p− p0 was used properly)

1.0

VI Using the change inwater level inNewton’s 2nd law 1.0
VII Continuity law either for displacements or acceler-

ations (only 0.5 p if the factor is S/(S − s))
1.0

VIII Concluding a linear relation between acceleration
and displacement of cylinder

0.5

IX Expressing ω from the dynamical equations (ex-
pressing ω =

√
keff/meff correctly or equivalent).

0.5

X T = 2π/ω 0.3
XI Correct substitution of values, final result 0.2

Total number of points 10.0
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T2: Thermal oscillations

Part (a): Critical voltages

The power heating the resistor is Pel = V 2/Rj . The thermal
equilibrium is reached when Pel = P = α(Teq − T0). To
avoid oscillations, the equilibrium temperature Teq must satisfy
Teq < Tc if R = R1 and Teq > Tc if R = R2. Solving for V ,
we have

V =
√
Rjα(Teq − T0). (1)

The critical values therefore are

V1 =
√

R1α(Tc − T0) and V2 =
√

R2α(Tc − T0). (2)

Part (b): Temperature behaviour

In the oscillating regime, we have a time-dependent current
I(t). The power dissipated over the resistor is Pel(t) =
R(t)I(t)2. By assumption (ii), we may assume that the ther-
mal equilibrium is reached very fast, i.e. Pel(t) = P (t). The
temperature T (t) is therefore determined by the current via

T (t) = T0 +
R(t)I(t)2

α
. (3)

If the resistance has value R1, the current will increase, try-
ing to reach J1 = V /R1. The difference I(t) − V /R1 will
decay exponentially, with characteristic time L/R1. The phase
transition occurs once the critical current

I1 =

√
α(Tc − T0)

R1

is reached. After the phase transition, the current will decrease,
approaching the new equilibrium value J2 = V /R2. Again,
I(t)− V /R2 will decay exponentially with characteristic time
L/R2, until the critical current

I2 =

√
α(Tc − T0)

R2

is reached. This behaviour is shown in Fig. 1.

I1

I2

J2

J1

I

t

R
R2

R1

t1 t2

Fig. 1

Together with (3), we see that the temperature behaves like
in Figure 2.

Tc

T

t

R
R2

R1

Fig. 2

The maximum and minimum temperatures will be attained
just after the phase transitions occur. We obtain that

Tmax − T0

Tmin − T0
=

R2I
2
1

R1I22
=

R2
2

R2
1

. (4)

Part (c): Period of oscillations

If the phase transition occurs at t = 0, with the resistance
changing fromRj′ toRj , the current is given by

I(t) =
V

Rj
+

(
Ij′ −

V

Rj

)
e−Rjt/L (5)

until the next phase transition occurs when I(tj) = Ij . Hence,
the period is

t1+t2 =
L

R1
ln
(
I2 − V /R1

I1 − V /R1

)
+

L

R2
ln
(
I1 − V /R2

I2 − V /R2

)
(6)

Inserting the relations R2 = ηR1 and V =
√
V1V2 =

η1/4
√
R1α(Tc − T0), we obtain the period

L

R1
ln
(
7

4

)
+

L

R2
ln (7) =

L

R1

(
ln
(
7

4

)
+

1

16
ln (7)

)
≈ 0.68

L

R1
. (7)
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Marking scheme

Task (a): Critical voltages pts
a1 Formula for the power dissipation Pel = V 2/Rj . 0.5
a2 Relating the power dissipation to the tempera-

ture of the resistor in oscillations-free stationary
regime, Pel = P = α(Teq − T0)

0.5

a3 Expressing the voltage in terms of the temperature
if the thermal equilibriumwere to be reached,V =√
Rjα(Teq − T0). Subtract 0.1 pts if V is not ex-

pressed explicitly.

0.5

a4 Realising that oscillations will not happen if V >√
R2α(Teq − T0) or V <

√
R1α(Teq − T0). No

marks if only one inequality is obtained (but no
subtractions because of that in a3 - in most cases
thosewho got correct expression for one of the volt-
ages but has a wrong or missing expression for the
other gets full marks for a1-a3, and 0 pts for a4).

0.5

Total number of points for Task (a) 2.0

Task (b): Temperature behavior pts
b1 Realising that the I − t curve is made of segments

of exponents, joined without discontinuities. Par-
tial credit of 0.5 pts if it is made of curved segments
for which it is not clear that these are exponents, or
if these are growing exponents, but which are con-
nected continuously with a discontinuous deriva-
tive dI

dt . No points if I(t) is discontinuous, or if only
one segment of an exponent is shown. Full marks
can be given if there is no I−t graph, but theT −t
graph is made of the segments of vanishing expo-
nents, connected with temperature jumps in a cor-
rect direction, and a partial credit of 0.5 pts if the
segments of theT−t are either growing exponents
or curves of unclear shape, still connected so that it
would correspond to a continuous I(t)-curve with
a discontinuous derivative. Partial credit of 0.5 pts
is given if there is no I − t-curve shown, but V − t
curve is shown to be made of decaying exponential
segments, connected with jumps

1.0

b2 Realising that (i) one of these exponents is in a form
a1 − b1e−t/τ1 and (ii) the other one — in a form
a2 + b2e−t/τ2 where (iii) the a1 > a2 and (iv)
τ1 > τ2. It is not necessary to write down these
inequalities mathematically — it is enough it these
are clear from a sketch. Inequality τ1 > τ2 does
not need to be written if expressions for τ1 and τ2
are given. Full marks can be given if I − t graph
is missing, but T − t graph is correct and has all
the features as described in b6. Full marks can be
also given if the correct exponential forms are doc-
umented not here, but in part c.

0.3+
0.3+
0.3+
0.1

b3 Realising that this exponential behaviour breaks
downonce the critical temperature is reached. This
does not need to be written specifically if the jumps
in T − t graph happen at T = Tc. No marks are
given if there is no clear discontinuity of T at Tc

and/or if there are discontinuities of T (t) or dT
dt at

some other values of T .

1.0

b4 Relating the critical temperature to the correspond-
ing critical current Ij

0.5

b5 Realising that the temperature curve T (t) is re-

lated to I(t)-curve, T (t) = T0 +
R(t)I(t)2

α

0.5

b6 Drawing a correct final sketch which has the fol-
lowing features: exponential segments showing an
exponential relaxation of T (t) in a right direction
both whenR = R1 and whenR = R2; jumps in a
right direction each time when T reaches Tc (sub-
tract 0.2 for each missing label on the axes and also
if the temperature jumps do not occur at the same
value of T ). No points are given if any of the listed
features is missing.

1.0

b7 Using the feature from the graph that the maximal
and minimal temperatures are taken immediately
after a phase transition when I = I1 and I = I2

0.5

b8 Correct answer for the ratio of the maximal and
minimal temperatures. Only 0.3 pts if the answer
is not simplified.

0.5

Total number of points for Task (b) 6.0

Task (c): Period of oscillations pts
c1 Expressing the duration of each of the exponential

segments as tj = L
Rj

ln ∆Ij,i
∆Ij,f

where ∆Ij,i and
∆Ij,f denote the corresponding initial andfinal de-
partures of the current from the equilibrium value
(fullmarks to be given if thefinal answer is correct).
Subtract 0.2 for each incorrect ∆Ij,i and ∆Ij,f ,
i = 1, 2 (this means that if none of them is cor-
rect, only 0.2 pts are given for c1). 60% of points if
tj is related to ∆Ij,i and ∆Ij,f correctly, but not
expressed explicitly.

0.5+
0.5

c2 Correct first and second terms in the final answer
(40% of it if the answer is not simplified)

0.5+
0.5

Total number of points for Task (c) 2.0
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T3: Dipole in a magnetic field

Part (a): Uniform linear motion

Lorentz forces acting on the charges:

F⃗+ = qv⃗+ × B⃗ = q(v⃗ + ω⃗ × r⃗)× B⃗,

F⃗− = (−q)v⃗− × B⃗ = (−q)(v⃗ − ω⃗ × r⃗)× B⃗,

where r⃗ is a vector from the center of mass to the position of the
positive charge.

−−−

+++

v⃗

ω

v⃗+ = v⃗ + ω⃗ × r⃗

v⃗− = v⃗ − ω⃗ × r⃗ r⃗

According to Newton’s first law, the center-of-mass C of the
dipole will move with constant velocity provided that the net
force:

F⃗ = F⃗+ + F⃗− = q(v⃗+ − v⃗−)× B⃗, (8)

acting on the dipole, is zero. Since v⃗+ ,⃗v− and B⃗ are perpendic-
ular, we require v⃗+ = v⃗−. It means that dipole does not rotate:
ω = ω0 = 0.

The pure translation, however, is possible if the pair of forces
F⃗+, F⃗−, has zero torque aboutC :

τ⃗ = r⃗ × F⃗+ − r⃗ × F⃗− = 2qr⃗ × (v⃗ × B⃗) =

2q
(
v⃗(r⃗ · B⃗)− B⃗(r⃗ · v⃗)

)
= −2qB⃗(r⃗ · v⃗). (9)

We conclude that scalar product is zero only when v⃗ ⊥ r⃗, i.e.
the initial velocity should be parallel to Y direction.

In summary, the dipole will move uniformly along Y if, and
only if, v⃗0∥Y and ω0 = 0.

Part (b): Circular motion

The net force can be calculated as:

F⃗ = F⃗+ + F⃗− = 2q(ω⃗ × r⃗)× B⃗ =

− 2q
(
ω⃗(B⃗ · r⃗)− r⃗(B⃗ · ω⃗)

)
= 2qBωr⃗ = Bωp⃗, (10)

where p⃗ is a dipole moment (|p⃗| = qd = 2qr and the direction
aligns with r⃗).

When C orbits a circle, F⃗ acts as a centripetal force, i.e. it
points to the center of the circle. Since F⃗∥p⃗, the dipole is always
in linewith the center of the orbit. Therefore, the orbital angular
velocity of C is equal to the angular velocity of rotation of the
dipole aboutC .

−−−
+++v⃗

F⃗

(xc, yc)

The magnitude of the orbital velocity is:

v0 = |ω0|Rc

From Newton’s second law, and accounting that the total mass
of the dipole is 2m:

2mv20
Rc

=
pBv0
Rc

,

i.e. the magnitude of velocity is:

v0 =
pB

2m
=

qBd

2m

and the radius of the orbit is:

Rc =
v0
|ω0|

=
qBd

2m|ω0|

The coordinates of the center of the circle are:

(xc, yc) = (±Rc, 0)

where the “+”sign corresponds to ω0 > 0, i.e. counter-
clockwise rotation, and the“−”sign—to clockwise rotation.
In either case, the initial velocity should point to the negative Y
direction:

v⃗0 = −qdB

2m
ȷ̂.

Part (c): Reversal of the dipole

In (10) we have shown that the net force:

F⃗ = 2q(ω⃗ × r⃗)× B⃗ = (ω⃗ × p⃗)× B⃗.

Since the dipole moment p⃗ rotates with angular velocity ω⃗, its
time derivative: dp⃗

dt
= ω⃗ × p⃗.

From Newton’s second law:

2m
dv⃗

dt
= F⃗ =

dp⃗

dt
× B⃗.

By integrating the equation, we arrive at an additional conserva-
tion law in the system (conservation of the so called “generalized
momentum”):

2mv⃗ − p⃗× B⃗ = const

Thus, if p⃗ has reversed its direction from p⃗0 to p⃗1 = −p⃗0,
then the velocity:

v⃗1 = v⃗0 +
(p⃗1 − p⃗0)× B⃗

2m
= − p⃗0 × B⃗

m
. (11)
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Since the magnetic field does not perform work on moving
electric charges, the kinetic energy of the dipole is conserved:

I

2
ω2
0 =

I

2
ω2
1 +

2m

2
v21,

Here, I = 2 × m(d/2)2 = md2/2 is the moment of inertia
of the dipole with respect to its center-of-mass. Since v1 doesn’t
depend on angular velocities, ω0 is minimal when ω1 = 0. Fi-
nally,

ωmin = v1

√
2m

I
=

p0B

m

√
4

d2
=

2qB

m

Alternatively, we can introduce θ to be the angle between the
dipole moment and the axisX (θ0 = 0) and rewrite the equa-
tions of translational motion in coordinates using ω = θ̇:

v̇x = θ̇
qBd

2m
cos θ, v̇y = θ̇

qBd

2m
sin θ.

By integrating these equations, given zero initial velocity, we
find how velocity depends on θ:

vx =
qBd

2m
sin θ, vy =

qBd

2m
(1− cos θ).

Using the expression (9) for the torque, we can write the equa-
tion of rotational motion as:

Iθ̈ = τ = −2qB(rxvx + ryvy) = −q2B2d2

2m
sin θ,

θ̈ +
q2B2

m2
sin θ = 0, (12)

This is the equation of a mathematical pendulum of length L in
gravitational field g = L(qB/m)2. And the equivalent ques-
tion becomes what is the minimal push θ̇0 required in the bot-
tom position for the pendulum to reach the top position. Kinetic
energy of the pendulumK = 1

2mL2θ̇20 will be transfered to the
potential energy U = 2mgL, from which we find:

ωmin = θ̇0 =

√
4
g

L
= 2

qB

m
.

Note. Due to symmetry, both clockwise and counter-
clockwise initial rotation with absolute value of |ω0| will work.

Part (d): Trajectory asymptote

If dipole’s trajectory has an asymptote, then its movement along
the asymptote is uniform. Indeed, if there is a linearmotionwith
acceleration, the dipole p⃗ should be always aligned with the di-
rection ofmotion, thus, not rotating. and as we found in part (a),
the absence of rotation can only bemaintained if v⃗ = const and
v⃗ ⊥ p⃗.

The uniform linear motion requires ω = 0, and this hap-
pens in the limit when the orientation is reversed p⃗1 = −p⃗0.
According to (11), in the limit, the dipole is travelling with the
speed v⃗1 = p0Bȷ̂/m. Thus the asymptote is parallel to Y axis:
x = D (for counter-clockwise initial rotation).

X

Y
v1 v1

D

If R⃗+ and R⃗− are absolute positions of the charges, we can
write equation for the angular momentum around the origin
LO:

dL⃗O

dt
= R⃗+ × (q

˙⃗
R+ × B⃗) + R⃗− × (−q

˙⃗
R− × B⃗) =

− qB⃗
(
R⃗+ · ˙⃗

R+ − R⃗− · ˙⃗
R−

)
= −qB⃗

2

d

dt

(
R2

+ −R2
−
)
.

After integration, we find onemore conservation law (conser-
vation of the “generalized angular momentum”):

L⃗O+
qB⃗

2

(
R2

+ −R2
−
)
= L⃗O+

qB⃗

2

(
(R⃗+ + R⃗−) · (R⃗+ − R⃗−)

)
= L⃗O + B⃗(R⃗ · p⃗) = const,

where R⃗ = 1
2(R⃗+ + R⃗−) is the position of center of mass. We

also used the fact that q(R⃗+ − R⃗−) = 2qr⃗ = p⃗.

Initially, centre of mass coincides with origin (R⃗0 = 0):

LO(0) = Iω0 = 2m
d2

4
2
qB

m
= qBd2. (13)

At asymptote, the dipole has reversed direction p⃗1 = −p⃗0 and
charges are travelling along parallel lines x = D ± r with the
velocity v⃗1:

LO(∞)+B(R⃗1 ·p⃗1) = m(D−r)v1+m(D+r)v1−BDp0

= 2mD
p0B

m
−BDp0 = BDp0 = BDqd. (14)

Since (13) equals (14), we conclude thatD = d.
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We can arrive to the same conclusion differently. Notice that
we are interested in the x coordinate ofC at infinity:

D = x∞ =

∫ ∞

0
vx dt =

qBd

2m

∫ ∞

0
sin θ dt.

From (12), we can express sin θ:∫ ∞

0
sin θ dt = − m2

q2B2

∫ ∞

0
θ̈ dt =

− m2

q2B2
(θ̇1 − θ̇0) =

m2

q2B2
ωmin =

2m

qB
.

Finally,

D =
qBd

2m

2m

qB
= d.

Note. If initial rotation is clockwise (ω0 < 0), the asymptote
has an equationx = −D, but the distance to the origin remains
the same.

Marking scheme

Part (a): Uniform linear motion pts
a1 Rationalizes that the net force on the dipole is zero

if the two poles move with equal velocities; Just ar-
gument v = const ⇒

∑
F⃗ = 0 is 0 pts.

0.7

a2 Concludes that ω0 = 0. 0.3
a3 Using the argument of zero torque, concludes that

the velocity should be perpendicular to the dipole;
Just argument ω = const = 0 ⇒ τ⃗ = 0 : 0.4 pts

0.7

a4 States explicitly that v⃗0∥Y (or⊥ X). 0.3
Total number of points for part (a) 2.0

Part (b): Circular motion pts
b1 Derives expression for the magnitude of the net

force on the dipole in terms of ω AND states explic-
itly that it is parallel to the dipole axis OR derives
one single vector expression.

0.9

b2 Realizes (drawing or explicit statement) that F⃗ and
the dipole axis point to the center of the orbit, and
concludes thatω0 is equal to the orbital angular ve-
locity.

0.5

b3 Writes down Newton’s second law for the circular
motion.

0.5

b4 Makes use of the relation v0 = |ω|Rc. 0.2
b5 Derives expression for v0 and specifies its direction

(drawing or statement) OR derives one single vec-
tor expression for v⃗0; if direction is wrong or miss-
ing 0.2 pts

0.3

b6 Derives explicitly Rc = qbD/(2m|ω0|). If | · | is
omitted, still full points.

0.3

b7 Writes down the coordinates of the center of the or-
bit; 0.2 for correct xc (including sign), 0.1 for cor-
rect yc; xc = qbD/(2mω0) is a correct answer

0.3

Total number of points for part (b) 3.0

Only one of the grading tables should be used for part (c), the one
which results in a higher score.

Part (c): Reversal of the dipole pts
c1 By integrating the equation(s) of motion derives a
“generalized momentum”conservation law – a re-
lationship between the linearmomentum2mv⃗ and
the dipole moment p⃗ – in vector form OR for the
Cartesian components.

1.5

c2 States explicitly that the kinetic energy of the dipole
conserves.

0.3

c3 Writes down explicit expression for the kinetic en-
ergy in terms of angular velocity and linear velocity
of the center of mass.

0.5

c4 Realizes that ω0 is minimal when ω1 = 0 in the
reversed position.

0.2

c5 By using the“generalized momentum”conserva-
tion, derives explicit expression for the linear ve-
locity v1.

0.5

c6 Applies the conservation of energy to find relation-
ship between v1 and ωmin

0.8

c7 Derives the final expression for ωmin 0.2
Total number of points for part (c) 4.0

Alternative approach: pendulum analogy
Part (c): Reversal of the dipole pts
c1 Derives the expression τ = −B(p⃗ · v⃗) for the

torque. Even if the derivation has been made in
parts (a) or (b), the points should be assigned to
Task (c); If term (B⃗ · p⃗) is not cancelled, still full
points

0.5

c2 By integrating the equations of motion, expresses
vx and vy in terms of θ.

1.5

c3 Writes down the equation of rotational motion in
terms of sin θ.

0.5

c4 States that the angular dynamics of the dipole is
equivalent to a large-amplitude oscillation of a
mathematical pendulum.

0.3

c5 Realizes that ω0 is minimal when ω1 = 0 in the
reversed position.

0.2

c6 Applies the conservation of energy to the ”equiva-
lent pendulum”.

0.8

c7 Derives the final expression for ωmin 0.2
Total number of points for part (c) 4.0

Part (d): Trajectory asymptote pts
d1 Rationalizes that the asymptote is parallel to Y , i.e.

x = ±D.
0.1

d2 Rationalizes that asymptotically the motion is lin-
ear uniform

0.2

d3 Either finds conservation law L⃗O + B⃗(R⃗ · p⃗) OR
writes x∞ as integral of vx (with explicit expres-
sion for vx) as a method to findD.

0.3

d4 Correctly computes generalized angular momen-
tum at 0 and∞ OR uses sin θ ∝ θ̈ in integral.

0.2

d5 Concludes thatD = d. 0.2
Total number of points for part (d) 1.0


