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The following information applies to problems 1 and 2.
At time t = 0, a small ball is released on the track shown, with an initial rightward velocity. Assume
the ball always rolls along the track without slipping.

1. The ball starts at point A, turns around at point B, and returns to point A. Which of the following
shows the speed of the ball as a function of time?

(A)

(B)

(C)

(D)

(E)

Solution

The speed starts uniform, then uniformly decelerates to zero as the ball rises up the slope, and is
instantaneously zero when the ball is at point B. Then the ball speeds up again as it goes down
the slope, and returns to point A with the same speed it started with. Thus, the answer is (C).

2. Which of the following shows the horizontal velocity of the ball as a function of time?
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(A)

(B)

(C)

(D)

(E)

Solution

The horizontal velocity is initially constant. As in the previous question, when the ball goes through
the bend in the track, its speed is unchanged. However, the direction of its velocity quickly changes,
so that only part of it is directed horizontally. Thus, the horizontal velocity very quickly drops. As
the ball climbs up the hill, its horizontal velocity decreases uniformly, then very quickly increases
in magnitude when it goes through the curve again. Therefore, the answer is (E).

3. Two massless rods are attached to frictionless pivots, with their ends touching. The distances
between the pivot points and the endpoints of the rods are shown below.

F

F ′
2m 1m

0.5m 2m

Neglecting friction between the rods, if a force F is applied at the left end of the left rod, what
force F ′ must be applied at the right end of the right rod to keep the system in equilibrium?

(A) F/8

(B) F/2 ← CORRECT

(C) 4F/7

(D) 6F/5

(E) 2F

Solution

By balancing torques on the first rod, we see that the normal force on the right end is twice the force
exerted on the left end; that is, the first rod is acting as a lever with mechanical advantage 2. By
similar logic, the second rod acts as a lever with mechanical advantage 1/4. Thus, the combination
of the two has mechanical advantage 2(1/4) = 1/2, so F ′ = F/2.
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4. Alice and Bethany stand side by side on the Earth’s equator. If Alice jumps directly upward, in
her frame of reference, to a small height h much less than the radius of the Earth, she will land a
distance D to the west of Bethany. If Alice had instead jumped to a height 2h, how far to the west
of Bethany would she land? Neglect air resistance.

(A) D/
√

2

(B) D

(C)
√

2D

(D) 2D

(E) 23/2D ← CORRECT

Solution

The distance to the left of the starting position is given by ∆v t, where ∆v = vave−v0 is the average
change in tangential velocity due to the jump and t is the total time of the jump. We can compute
the proportionality between ∆v and h using conservation of angular momentum,

vave(R+ have) ≈ v0R =⇒ vave ≈
v0R

R+ have
.

We use an ≈ because [v · (R + h)]ave 6= vave · (R + have), but they both exhibit the same scaling.
Then,

∆v = v0 − vave =
v0h

R+ have
=⇒ ∆v ∝ h.

From basic kinematics, t ∝ h1/2, so ∆v t ∝ h3/2, so the answer is (E).

5. A train starts from city A and stops in city B. The distance between the cities is s. The train’s
maximal acceleration is a1 and its maximal deceleration is a2 (in absolute value). What is the
shortest time in which the train can travel between A and B?

(A) 2

√
s

a1 + a2

(B) 2

√
s√
a1a2

(C)

√
2
s(a1 + a2)

a1a2
← CORRECT

(D)

√
2sa2

a1(a1 + a2)

(E)

√
s
√
a1a2

(a1 + a2)2

Solution
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When going from city to city as quickly as possible, the train accelerates for some time t1, reaches a
maximum speed v, then immediately decelerates for a time t2, coming to rest right when it arrives
at the new city. The speed v obeys v = a1t1 and v = a2t2, and so

a1t1 = a2t2 = v.

The average speed of the train is v/2, so we also have

(t1 + t2)
v

2
= s.

If we solve these equations for t1, we find

t1 =

√
2a2s

a1(a1 + a2)
.

Then we can find that

t2 =
a1t1
a2

,

and therefore

t = t1 + t2 = t1

(
a1 + a2
a2

)
.

Substituting in our equation for t1, we have

t =

√
2s(a1 + a2)

a1a2
.

Alternatively, we can consider the limit a2 → ∞. In this case, the train accelerates all the way to
the next city, and the time is

ta2→∞ =

√
2s

a1
.

Only the correct answer simplifies appropriately.

6. A cylindrical bucket of negligible mass has radius R and height h, and is open at the top. It is
submerged in water of density ρ, with its top a distance H below the surface. How much work is
needed to pull the bucket slowly up so that its bottom is just above the lake surface?

h

H

R

(A) ρgπR2h(H − h)

(B) ρgπR2h2

(C) ρgπR2(H − h)2
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(D) ρgπR2h2/2 ← CORRECT

(E) ρgπR2h(H − h)/2

Solution

While the bucket is in the lake, it is full of water, and the weight of the water is exactly cancelled by
the buoyant force. Thus, no work is required to pull the bucket until its top is at the lake surface.
From this point onward, the force linearly increases. The average force required to pull the bucket
out of the water is mg/2 where m = πρR2h is the mass of the water in the bucket, and the distance
is h, giving total work ρgπR2h2/2.

The problem can also be solved using energy conservation. After the bucket has been lifted, a mass
m of water has been raised from the water surface to height h/2 above it, giving work mgh/2 and
the same result.

7. A point mass slides with speed v on a frictionless horizontal surface between two fixed parallel walls,
initially a distance L apart. It bounces between the walls perfectly elastically. You move one of the
walls towards the other by a distance 0.01L, with speed 0.0001v. What is the final speed of the
point mass?

(A) 1.001v

(B) 1.002v

(C) 1.005v

(D) 1.01v ← CORRECT

(E) 1.02v

Solution

The total time is 100L/v, during which 50 round-trips occur. Because the collisions are elastic,
each collision with the moving wall increases the speed of the block by 0.0002v. Thus, the final
speed is increased by (50)(0.0002v) = 0.01v.

8. A mint produces 100,000 coins. Upon weighing some of them with a precise scale, officials find
that the coins vary slightly in weight, with an independent uncertainty of 1%. About how many
coins must be randomly sampled and weighed in order to determine the total weight of the coins
to within 0.1% uncertainty? Assume there are no sources of systematic uncertainty.

(A) Almost all of the coins must be weighed.

(B) 10,000

(C) 1,000

(D) 100 ← CORRECT

(E) 10
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Solution

Since the uncertainty comes from the independent 1% of each coin, to reduce the uncertainty by a
factor of 10, one needs to take 102 = 100 samples.

9. NASA trains astronauts to experience weightlessness with an airplane which flies in a parabolic
arc with constant acceleration g toward the ground. The plane can remain on this trajectory
for at most 25 seconds, due to the large change in altitude required. If instead of simulating
weightlessness, NASA wanted to fly a trajectory that would simulate the gravitational acceleration
of Mars 3.7 m/s2, for what length of time can the plane simulate Mars gravity? Assume that the
maximum change in altitude is the same for both trajectories.

(A) 25 s

(B) 31 s ← CORRECT

(C) 41 s

(D) 68 s

(E) 183 s

Solution

The new acceleration of the plane should be 10 m/s2 − 3.7 m/s2 = 6.3 m/s2. The altitude change
is supposed to be the same, so if the weightless flight took time t and the Mars flight took time τ,
we have

1

2
10 m/s2 · t2 =

1

2
6.3 m/s2 · τ2.

Solving for τ gives 31 s.

10. A uniform solid circular disk of mass m is on a flat, frictionless horizontal table. The center of mass
of the disk is at rest and the disk is spinning with angular frequency omega0. A stone, modeled as
a point object also of mass m, is placed on the edge of the disk, with zero initial velocity relative to
the table. A rim built into the disk constrains the stone to slide, with friction, along the disk’s edge.
After the stone stops sliding with respect to the disk, what is the angular frequency of rotation of
the disk and stone together?

(A) ω0

(B) 2ω0/3

(C) ω0/2 ← CORRECT

(D) ω0/3

(E) ω0/4

Solution
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The center of mass of the stone-disk system is initially stationary, so it remains stationary. This
means the final motion of the system is purely rotation about its center of mass.

The disk and stone conserve angular momentum. If the angular momentum of the disk about its
center is I0, the initial angular momentum is

L0 = I0ω0.

We need to calculate the angular momentum of the stone-disk system about its center of mass.

The center of mass is half way between the center of the disk and the stone, so if the radius of the
disk is R, and its mass m, the moment of inertia of the stone is

Istone = m

(
R

2

)2

.

By the parallel axis theorem, the angular momentum of the disk is

Idisk = m

(
R

2

)2

+ I0.

Using I0 =
1

2
mR2, the angular momentum of the stone-disk system is

Itotal = mR2 = 2I0.

By angular momentum conservation, doubling the moment of inertia cuts the angular frequency in
half, so the final angular frequency is

ω =
1

2
ω0.

11. Projectiles A, B, and C are simultaneously thrown off a cliff, and take the trajectories shown.

A B C

Neglecting air resistance, rank the times tA, tB, and tC they take to hit the ground.

(A) tA < tB < tC

(B) tA < tC < tB

(C) tC < tB < tA

(D) tC < tA < tB ← CORRECT

(E) There is not enough information to decide.
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Solution

Since the x and y directions are independent, the time to impact only depends on the initial vy,
which in turn determines the maximum height. The higher the maximum height, the longer the
trajectory takes.

12. An object of mass m = 1 kg is attached to a platform of mass M = 4 kg with a spring of spring
constant k = 400 N/m. There is no friction between the object and the platform, and the coefficient
of static friction between the platform and the ground is µ = 0.1. The object is placed at its
equilibrium position, and then given a horizontal velocity v.

k

M

m

v

For what v will the platform never slip on the ground?

(A) v ≤ 0.1 m/s

(B) v ≤ 0.2 m/s

(C) v ≤ 0.25 m/s ← CORRECT

(D) v ≤ 0.4 m/s

(E) v ≤ 0.5 m/s

Solution

The force of the spring on the platform is Fs = kx, where x is the displacement of the object from
equilibrium. The maximum value of x can be found by conservation of energy,

1

2
mv2 =

1

2
kx2

which gives a maximum spring force Fs = v
√
km acting on the platform. The maximum possible

friction force on the platform is (M +m)µg. Setting these two equal, the maximum velocity is

v =
(M +m)µg√

km
= 0.25 m/s.

13. A car is driving on a semicircular racetrack. Its velocity at several points along the track is shown
below.
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Which of the following could depict its acceleration at the corresponding points?

(A)

(B)

(C)

(D)

(E)

Solution

Because the car is speeding up, its acceleration has a tangential component, i.e. a component parallel
to the racetrack. Because the car is turning, its acceleration also has a component v2/r directed
towards the center of the track. Since v increases through the turn, this inward radial acceleration
increases through the turn. The only choice with all of these features is (D).

14. A bacterium cell swims by rotating its bundle of flagella to counter a viscous drag force in the
medium. The drag force F (R, v, η) only depends on the typical length scale of the cell R, its speed
v, and the viscosity of the fluid η, which has units of kg/(m · s). It is observed under a microscope
that a cell of length 1 µm swims at about 20 µm/s. Estimate the speed of a cell of length 0.5 µm,
assuming cells of all sizes generate the same amount of force from their flagella.

(A) 5 µm/s

(B) 10 µm/s

(C) 40 µm/s ← CORRECT

(D) 80 µm/s

(E) There is not enough information to decide.

Solution

Using dimensional analysis, we can see that force scales as F ∼ Rvη. To see this you can try:

[m]a[m/s]b[kg/(m · s)]c = [N] = [kg ·m/s2].

The only solution is a = b = c = 1. Therefore, in the same medium, when the cell length reduces
by 1/2, its speed doubles.

15. A block is released from rest at the top of a fixed, frictionless ramp with horizontal length L and
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inclination θ.

θ

L

For a fixed value of L, which value of θ minimizes the time needed for the block to reach the bottom
of the ramp?

(A) 30◦

(B) 45◦ ← CORRECT

(C) 60◦

(D) 75◦

(E) 80◦

Solution

The acceleration down the ramp is a = g sin θ, and d = at2/2 where the distance d = L/ cos θ.
Hence t2 ∝ d/a ∝ 1/ sin θ cos θ ∝ 1/ sin(2θ). The maximum of sin(2θ), which minimizes t, is at
θ = 45◦.

16. A particle begins at the point x = 0 and moves along the x-axis with initial rightward velocity v0.
Later, the particle reaches the point x = L. The velocity as a function of position during this time
interval is shown below.

x

v

v0

L

Consider the following three statements.

I. The particle instantaneously stops at x = L.

II. The particle is uniformly accelerated.

III. The particle could be performing simple harmonic motion.

Which of these statements are true?

(A) Only I. ← CORRECT

(B) Only II.

(C) Both I and II.

(D) Both I and III.

(E) None of the above.
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Solution

The particle instantaneously stops at x = L since v(L) = 0. If the particle were decelerating
uniformly, then by conservation of energy, mv2/2 + Fx would be constant for some constant F ,
which means v(x) would not be a straight line. (Of course, v(t) would be a straight line, but this
isn’t the same thing as v(x).) Similarly, if the particle were performing simple harmonic motion,
then mv2/2 + kx2/2 would be constant for some constant k, and the resulting v(x) would also not
be a straight line.

17. In a certain country, the short hand of a clock is exactly half as long as the long hand, and rotates
twice for each rotation of the long hand.

A

B

C

The three points shown on the clock hands have accelerations of magnitude aA, aB, and aC . The
point B is at the midpoint of the long hand. Which of the following is true?

(A) aA < aB = aC

(B) aA = aB < aC

(C) aB < aA < aC ← CORRECT

(D) aB < aA = aC

(E) aB < aC < aA

Solution

The centripetal acceleration is a = ω2r. Since A and B have the same ω, aA = 2aB. Since B and
C have the same r, aC = 4aB. Thus, aB < aA < aC .

18. A factory’s smokestack continually produces smoke. The smoke always rises with a constant speed
relative to the air around it. Suppose that the air was initially still, then abruptly started blowing
to the right, then abruptly became still again for some time. Which of the following could show
the resulting shape of the smoke plume?

(A) (B) (C) (D) (E)
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Solution

The smoke right next to the smokestack has just been emitted, and has only been exposed to
still air, so it must rise straight upward. This rules out choice (A). The smoke high above the
smokestack has experienced the full duration of the rightward wind, so it all must have been pulled
to the right by the same amount, ruling out choices (C) and (D). Finally, the smoke in between has
been exposed to only part of the rightward gust of wind (since some of that wind occurred before
that smoke left the smokestack), so its path should smoothly connect the two vertical segments.
This rules out choice (E), leaving (B) as the answer.

19. A cavity of radius R/2 is dug out of a spherical planet with uniform mass density of mass M and
radius R. What is the magnitude of the gravitational field at point P in the diagram below?

P

R R/2

(A) (0.200)GM/R2

(B) (0.457)GM/R2

(C) (0.829)GM/R2

(D) (0.900)GM/R2

(E) (0.912)GM/R2 ← CORRECT

Solution

The gravitational field due to a completely filled gray sphere is −MG
R2 ŷ. We can treat the white

circle as having negative mass. The center of the white circle is
√

5R/2 away from the point P .
The field from the white circle has a magnitude of MG

8(R2+(R/2)2)
= MG

10R2 . The field from the white

circle is thus MG
5R2
√
5
ŷ − MG

10R2
√
5
x̂. Adding the fields and taking the magnitude gives (0.912)MG

R2 .

20. The line between day and night on a planet or moon is called the terminator. How fast does the
terminator of Earth’s moon move across its surface at the equator? The radius of the moon is
1.74× 106 m.

(A) 0 m/s

(B) 4.5 m/s ← CORRECT
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(C) 83 m/s

(D) 465 m/s

(E) 2201 m/s

Solution

The same side of the moon always faces Earth. This means the terminator runs all the way around
the moon once per month. The speed is

v =
2π · 1.74× 106 m

28 days
≈ 4.5 m/s.

21. A solid sphere sits at the top of a ramp of height h inclined at angle θ to the horizontal. Both the
static and kinetic coefficients of friction between the sphere and incline are µk = µs = 0.2. The
sphere is released from rest at the top of the incline. For which of the following values of θ is the
total translational plus rotational kinetic energy of the sphere greatest when it reaches the bottom
of the incline?

(A) 10◦ ← CORRECT

(B) 45◦

(C) 60◦

(D) 80◦

(E) The mechanical energy is the same for all choices.

Solution

As long as the sphere rolls without slipping, it converts all its gravitational potential energy into
kinetic energy, so its mechanical energy stays constant. That’s what happens when the slope is
very shallow. When the slope is steep, the acceleration is greater, and the torque required to roll
without slipping is greater than what friction can provide. At these slopes, the sphere slips and
dissipates mechanical energy, so its mechanical energy at the bottom of the slope is lower.

When rolling without slipping, a solid sphere has acceleration down an incline of
5

7
g sin θ.

The critical transition slope occurs when the friction force required to provide angular acceleration

for the ball exceeds the maximum friction of mg cos θµ. This occurs when tan θ =
7

2
µ, or about 35◦

when µ = 0.2. This means that case (a) is rolling without slipping, while (b), (c), and (d) all have
slipping and less kinetic energy at the bottom of the slope.

22. A ship rams into a hunk of ice floating in the sea. “Icebreakers” are ships designed so that when
this happens, the ice is pushed down beneath the ship. If the coefficient of static friction between
the ice and the ship is µs, what condition applies to the angle θ, as shown in the figure, so that the
icebreaker functions as intended?
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θ
ship

ice

(A) cot θ > µ ← CORRECT

(B) cos θ > µ

(C) cot θ < µ

(D) cos θ < µ

(E) It depends on the curvature of the ice.

Solution

There is a force from the ship on the ice, which may be broken into a normal force and a friction
force. The vertical component of the normal force is −N cos θ and the vertical component of the
friction force is f sin θ with f the magnitude. The friction force can be at most Nµ, so the vertical
force from the ship on the ice is

Fy ≤ µN sin θ −N cos θ.

We want Fy < 0 in order to push the ice down, so we must have

N cos θ > µN sin θ

or
cot θ > µ.

23. An imperfect spring has a restoring force F that depends on the displacement x from equilibrium
as in the graph shown below.

x

F

d−d

The slope of the curve for x < −d and x > d is a constant −k. A mass m is attached to the spring
and released from rest at the position x = A, where A > d. What is the period of the subsequent
motion?

(A) T =

√
m

k

(
2π +

2d

A

)
(B) T =

√
m

k

(
2π +

2d

A− d

)
(C) T =

√
m

k

(
2π +

4d

A− d

)
← CORRECT
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(D) T =

√
m

k

(
2π +

πd

A− d

)
(E) T =

√
m

k

(
2π +

2πd

A− d

)

Solution

The full motion is the combination of two parts: simple harmonic motion as if the spring were
ideal (when the mass is at |x| > d), and motion with uniform velocity in the region |x| < d. By
conservation of energy, the velocity in this region satisfies

1

2
mv2 =

1

2
k(A− d)2

so the time spent in this region is
4d

v
=

4d

A− d

√
m

k
.

The time spent at |x| > d is 2π
√
m/k, and adding these two times gives the result.

24. Two satellites are in circular orbits around a star with equal radius r, speed v, and period T . The
satellites are initially diametrically opposite each other. In order to meet the second satellite in
time T/2, the first satellite should decrease its speed to approximately

(A) 0.50v

(B) 0.64v ← CORRECT

(C) 0.71v

(D) 0.76v

(E) 0.82v

Solution

For the meeting to occur, the first satellite must switch into an orbit with period T/2. By Kepler’s
third law, the new semi-major axis should be a = r/22/3. Since the total energy of a satellite is
E = −GMm/2a, the energy difference of the two satellites is

E2 − E1 =
GMm

2r
(22/3 − 1) =

1

2
mv2 − 1

2
mv′2

where v′ is the speed of the first satellite right after it slows down. On the other hand, in circular
motion we have mv2 = GMm/r, which implies after some simplification that

v′ =
√

2− 22/3 v = 0.64v.

25. Spaceman Fred’s trusty pellet sprayer is held at rest a distance h away from the center of Planet
Orb, which has radius R � h. The pellet sprayer ejects pellets radially outward, uniformly in the
plane of the page. These pellets are all launched with the same speed v, so that a pellet launched
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directly away from Orb by the pellet sprayer can just barely escape it. What fraction of the pellets
eventually lands on Orb? (Hint: you may use the small angle approximation, sin θ ≈ θ for θ � 1,
where θ is in radians.)

R

h

v

Left: the pellet sprayer relative to Orb Right: a close-up of the pellet sprayer

(A)
1

2π

R

h

(B)
1

π

R

h

(C)
2

π

R

h

(D)
1

2π

√
R

h

(E)
1

π

√
R

h
← CORRECT

Solution

Because all pellets are launched at the escape velocity, the speed of one of these pellets a distance
r away from Orb is

v(r) =

√
2GM

r
.

At the distance rmin of closest approach, the pellet’s velocity must be perpendicular to its displace-
ment from the planet’s center. Then, by conservation of angular momentum, for a pellet of mass
m launched at an angle θ from the vertical,

mv(h)h sin θ = mv(rmin)rmin =⇒
√
h sin θ =

√
rmin.

The pellet collides with the planet whenever rmin < R. Then, our equation for θmax is

θmax ≈ sin θmax =

√
R

h
.

The range of collision angles is thus −θmax < θ < θmax and the range of allowed angles is 2π, so the
fraction is

f =
1

π

√
R

h
.
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