Mark Scheme Physics Challenge 2007

Please award marks as indicated below. Equivalent valid reasoning should gain equal credit to the solution presented here. Schools may give 'error carried forward' marks where an incorrect answer is used as part of the data needed for a subsequent question, providing that the resulting final answer is not plainly ridiculous.

If incorrect units are used more than once in the paper, one mark should be deducted from the pupil's total. If an inappropriate number of significant figures are given more than once in final answers on the paper, then one mark should be deducted from the pupil's total.

(There are NO star marks this year.)

Section A: Multiple Choice

1. C		2.	D	3.	С	4. A		5. B
6. C		7.	D	8.	A	9. C		10. D
Question Total 10 Section B: Written Answer							10 marks	
Section B	: Writ	ten Ans	swer					
1.	(a) A	C suppl	ly means t	hat ther	e is a char	iging flux lin	king	coil [1]
	Therefore there is an induced EMF measured by voltmeter [1]							
	(b) EMF ∝ rate of change of flux						[1]	
	$2 \times \text{current} \Rightarrow 2 \times \text{flux} \Rightarrow 2 \times \text{EMF}$						[1]	
	(c) No [1]						[1]	
	No change in flux [2							[2]
	(d) Yes [1]							[1]
	Under normal operating conditions the current in N is same as current in L							e as current in L
								[1]
	Ques	stion Toi	tal					9 marks
2.	(a) 9	00 kg ×	10 N/kg /	4 = 225	50 N			[2]
	A	ssumpti	on: equal	force pi	roduced by	each colum	n	[1]
	(b) 2	$0 \text{ cm}^2 =$	20×10^{-4}	m^2				[1]
	p = I	7/A = 22	50 N/20 ×	10 ⁻⁴ m	$^{2} = 1.13 \times$	10 ⁶ Pa		[2]
	(c) P	ressures	in cylinde	ers are t	he same			[1]
	Press	sure in p	art (b) mu	ltiplied	by 1 cm ²	$\sin m^2 = 112.3$	5 N	[2]
	(d) N	1echanic	might be	60 kg s	so could p	ut all the wei	ght o	n it [2]
	(e) V	olume o	of oil = $2 r$	$n \times 4 \times$	20 cm^2			[1]
	2 × 8	0×10^{-4}	$m^3 = 0.01$	6 m ³				[2]
	Ques	tion Tot	al					14 marks

		Total marks on naner	60
		Question Total	14 marks
		$x = 110 \times 5.2 \times 10^3 \text{ km} = 5.5 \times 10^5 \text{ km}$	[1]
		$0.88 \text{m/} (0.8 \times 10^{-2} \text{ m}) = x/5.2 \times 10^{3} \text{ km}$	[2]
	f)	Let x be the distance from the earth to the Moon	
	e)	$0.88 \text{m}/(0.8 \times 10^{-2}) \text{m} = 110$	[1]
		$D_{\text{moon}} = D/2.5 = 5.2 \times 10^3 \text{ km}$	[1]
	d)	$\pi D = 4.1 \times 10^4 \text{ km so } D = 4.1 \times 10^4 \text{ km/}\pi$	[1]
	۵.	Shadow width = 2.5 moon diameters	[1]
	c)	2.5 h from Y to Z and 1 h is equiv. to a diameter	[1]
			F4.3
	,	$= 4.1 \times 10^4 \text{ km}$	[1]
	b)	C = (360/7) 800 km	[2]
		7.0 degrees	[1]
	u)	Tan of angle or otherwise	[1]
Sec	tion (a)	C: Written Answer Units correctly represented (cm & m)	[1]
		Question Total	13 marks
	u)	$h_2 \sim 162 \text{ mm} \text{ for } 10 \text{ N}$	[1]
	d)	Same y intercept, but half the gradient	[2]
	c)	Gradient = $-50 \text{ mm/9.0N} = -5.6 \text{ mm/N}$ Change in Load per mm = -0.18 N/mm	[1]
	,	Intercept on horizontal is the load that makes $h_1 = 140$ mm, but a accept the load that makes h_1 zero	[2]
	b)	Intercept on vertical is h ₁ with no load	[1]
		Line of best fit	[1]
		Points plotted correctly (-1 for each incorrect, 0 minimum)	[2]
3.	a)	Graph axes labelled correctly with units	[2]

Total marks on paper

PHYSICS CHALLENGE CERTIFICATES

All Participating students will receive a certificate. They will be awarded Gold, Silver, Bronze and Participation Medal Certificates, based on their marks, according to the scheme below:

Medal Certificate	Gold	Silver	Bronze	Participation
Mark Range	60 - 42	41 - 30	29 - 18	17 – 0
No of Certs.				

Total Number of Entries					
NAME OF TEACH	ER				
NAME OF SCHOO	oL				
ADDRESS OF SC	HOOL				
Please return to:					
D	r Cyril Isenberg				
P1	hysics Challenge Competition				
	ritish Physics Olympiad Office				
	epartment of Physics and Astronomy				
	niversity of Leicester				
	niversity Road, Leicester LE1 7RT				