BRITISH PHYSICS OLYMPIAD 2014-15

A2 Challenge Solutions

1	a)	iĺ)	Momentum \square mgh \square $\sqrt{(2gh)}$) v
	b)	ii) √(2√(2gh)	Is $oldsymbol{arDelta}$ $2\sqrt{(2gh)}$ $oldsymbol{arDelta}$ $3\sqrt{(2gh)}$ $oldsymbol{arDelta}$
	c)	Speed	d after falling 1m =	$\sqrt{(2gh)} = \sqrt{(2x10x1)} = 4.47 \text{ms}^{-1} \ \Box$
	By the reasoning above, successive balls will ris $7\sqrt{(2gh)}$, $15\sqrt{(2gh)}$, $31\sqrt{(2gh)}$, $63\sqrt{(2gh)}$, $127\sqrt{(2gh)}$, $511\sqrt{(2gh)}$, $1023\sqrt{(2gh)}$, $2047\sqrt{(2gh)}$, $4095\sqrt{(2gh)}$ etc (spot that the coefficients 'doubtime) \square As escape velocity is 2460 times 4.47ms^{-1} , $12 \text{ the required to reach escape velocity (Proposition in use of g=9.81 \text{ms}^{-2}) \square$			$\sqrt{(2gh)}$, $63\sqrt{(2gh)}$, $127\sqrt{(2gh)}$, $1023\sqrt{(2gh)}$, $2047\sqrt{(2gh)}$, at the coefficients 'double+ 1' each 60 times 4.47ms^{-1} , 12 balls are
_				TOTAL 14
2	a)	i) ii) iii)	zero Δ a node Δ π or anything sugg	esting anti-phase (to give zero
			resultant displacer	•
				suggesting in phase
	b)	i)	virtual ✓	anything else suggesting anti-phase 🗹
	,	ii)	both S, S' originate	e from same source and therefore phase difference owtte 🗹
		iii)		on that side of the reflector
		iv)	-	$5x10^{-4} / 1.00 = 5x10^{-7} \text{m}$
		v)	Reflection introduc	tes an extra phase difference of π , in
			•	nase difference arising from
			•	, so central fringe is dark/ zero
			intensity owtte ☑	
		vi)	The zero-order in `	Young's fringes (with normal

incidence) is an interference maximum. owtte ☑

TOTAL 13

- **3** a) i) $1/R = 1/R_1 + R_2$ **owtte**
 - ii) correct re-arrangement to give $R = R_1R_2 / (R_1+R_2)$
 - b) i) 40Ω **☑**
 - ii) ((40+20)||20) \square (parallel part) + 20 = 35 Ω
 - iii) Now this becomes ((r+20)||20) + 20realise this \square ie 20(r+20) + 20 = 40r+1200 **owtte** \square r+40
 - iv) Equating this to r \square and solving \square leads to $r = 20\sqrt{3} \Omega$

TOTAL 9

- **4** a) i) temperature higher than surroundings **☑**
 - ii) As thermal energy travels down temperature gradient,

 Earth gets hotter towards centre. owtte

 ✓
 - iii) $4\pi r^3 \rho/3 \square$
 - iv) Area of shell is $4\pi r^2$, \square so total power output is $(4\pi r^2)x(-k\delta T/\delta r) = 4\pi r^3 \rho/3\square$ Rearranging gives $\delta T = -(\rho/3k)r\delta r$ \square
 - v) Integrating wrt r \square and using $T = T_{centre}$ when r = 0 \square Leads to $T = T_{centre} \rho r^2/6k$ \square
 - vi)

Falls between centre and surface
☐
Parabolic form with vertex correctly placed ☐

b) They are much hotter in the centre than at the suface and may therefore reach ignition temperature. **owtte** Ø Breaking such a hot and occluded body of combustible material open exposes it to air richer in oxygen which can cause it to erupt violently into flames. **owtte** Ø

TOTAL 14