British Physics Olympiad 2017-18 #### **A2** Challenge - Mark Scheme ## September/October 2017 # Instructions Give equivalent credit for alternative solutions which are correct physics. Generally allow leeway of ± 1 significant figure. | 1. a |) (i |) zero resultant force | |------------|------|--| | | | zero resultant moment | | | | equilateral triangle (sketch) arrows, etc. (labelled P, Q, R \checkmark) | | | (111 | all leads to an anticlockwise moment (easiest to see if moments taken | | | | about any point inside ABC) owtte | | | | If concurrent, zero moment abotu their point of concurrency owtte | | | (v | Draw vector figure, angles $(180^{\circ} - \alpha), (180^{\circ} - \beta), (180^{\circ} - \gamma)$ Apply sine rule | | | | As $\sin(\theta) = \sin(180^{\circ} - \theta)$, this leads to result. | | | | (7) | | b |) (i | $F = pA = 1.0 \times 10^5 \times 0.040 = 4.0 \text{kN}$ | | | (ii | equal force on either side | | | (iii | no pressure between panes as air excluded | | | ` | so $4 \mathrm{kN}$ from each side pushing panes together | | | (iv | $F = \mu R = 0.95 \times 4.0 \mathrm{kN} = 3.8 \mathrm{kN}$ | | | | so equally difficult to slide apart | | | (v | paper porous/rough/compressible, so does not exclude air; allows air in owtte | | | · | (5) | | c |) (i |) $F = DLp = 2T; A = 2Lt;$ \checkmark $\sigma_{H} = F/A = DLp/2Lt = Dp/2t$ \checkmark) $F = \pi D^{2}p/4 = \pi Dt;$ \checkmark $\sigma_{A} = F/A = (\pi D^{2}p/4)/\pi DT = Dp/4t$ | | | (ii |) $F = \pi D^2 p/4 = \pi Dt;$ \checkmark $\sigma_A = F/A = (\pi D^2 p/4)/\pi DT = Dp/4t$ \checkmark | | | | Hence $\sigma_{\rm H}:\sigma_{\rm A}=2:1$ | | | (iv | Wrapped as hoops around the curved surface. | | | (11 | (This is the result to counteract the direction of maximum stress. However, to use the bands | | | | most effectively, they would be wrapped around in a helical form, at angle $\tan^{-1} \frac{1}{2}$ i.e. forces | | | | F, 2F at right angles, as can be observed in the stranding within a reinforced hose pipe.) | | | | Bonus mark for the idea of helical wrapping. (\checkmark) | | | | (6) | | | | [18 marks] | | 1 - | |) W = 1.00 kO × 10.0 m V | | 2. a | | $V = 1.00 \mathrm{k}\Omega \times 10.0 \mathrm{\mu A} = 10.0 \mathrm{mV}$ | | | (11 |) shunt current = $9.99999 A$ (= $10.0 A$) | | | ,··· | $pd = 10.0 \text{mV} \to R = 1.00(0001) \text{m}\Omega$ | | | (111 | | | | | current = $10.0 \mu\text{A} \rightarrow R = 999 \text{k}\Omega$ | | | | (5) | b) Each of **FAE**, **FBE**, **FCE**, **FDE** is a potential divider, and they are all equivalent. <u>Diagram(s)</u> required to illustrate equipotential points; such as below (may be combined) Figure 1: equivalent circuit of the form.... (this arrangement would be *hexagonal close packed* and, whilst *fcc* would also have a coord no. of 6, *bcc* would be 8) - (iv) all bonds intact, so no relative movement of atoms / still solid \checkmark smaller k ('weaker') means lower E or elastically softer material \checkmark Reference to expansion is due to the anharmonic nature of the bond, i.e. the force to compress and the force to expand are slightly different. For this a non-ideal spring is needed. Allow a mark if reference to the microscopic and macroscopic behaviour together. - (v) Specific latent heats for some simple elements: | Element | SLH (Fusion) | SLH (Vaporisation) | F: (F + V) | \checkmark | |------------------|-----------------------|-----------------------|---------------|--------------| | | $/\mathrm{kJkg^{-1}}$ | $/\mathrm{kJkg^{-1}}$ | no units | | | argon | 29.5 | 161 | 0.155 |) | | helium | 3.45 | 20.7 | 0.143 | | | hydrogen (H_2) | 59.5 | 445 | 0.118 | \ \ | | krypton | 16.3 | 108 | 0.131 | | | neon | 16.8 | 84.8 | 0.165 | J | | | | | 0.142 average | ✓ | So 14% or approximately one in seven bonds are broken on fusion and the remainder on vaporisation **Bonus mark** realise that H_2 is the odd-one-out; average now 0.15 (**√**) (8) **[13 marks]** 4. a) (i) phase change produces a dark line at the line joing the glass slides Alternate bright and dark labels at the three reflections Figure 2: path difference diagram #### **END OF SOLUTIONS**