—

AAPT | UNITED STATES PHYSICS TEAM
AIP | 1999

Solutions to Problems
Any correct, equivalent solution shouid be awarded proportianate points. You may further break
down the listed points into one point incremenis. Students should not be penalized in a
subsequent part for using the wrong answer to a previous part. (No double jeopardy.)

. Points
L. Ymex=10m v = 25 m's @ — 2 m/s”
4. The train’s aceeleration does not affect the vertical motion.
At the highest point, v, = 0 2
lll vl’.l'-'- h 12{1’-‘ 2
! PR ;
Vop = V28V e = NI B/ x7)(10m) =1dm (5 2
Since V,. =¥, sin & 2
-4 T 1“"?- ! [
o=sin”'| "/ |=sin '(Hm-fy, | ):34_1 2
v, A 25m/ s
b. The time to reach ¥ .. 1s oblained fromv =+ - gf  at the highest point
) [ /
=t 1T T 143 5
g 98&miy
The time to land 15 twice that, or £ = 2.86 5. 2
During that time, the ball moves a distance  xp, =V, ( — v, cosfr 2
where v, 15 the velocity of the train with respect to the Earth when the ball 1s launched.
And the front end of the train moves  x, =v (+ ¥ ar’ 2
The difference of those displacements is the ball’s displacement with respect to the train.
Ar=x,—x,=-v,cosbt - Y at" 2
) 2 &
Ax=-25m/ s{cos34.1"|2.865 ~ ¥ (2m/s* |(2.865) =67 3m 2

{Either sign okay. 67 4 m also okay. Part b may also be solved in the train’s accelerating frame
or in an inertial frame with the same velocity with respect 1o the Earth that the train had when
the ball was launched. Any correct method may be used.)

2. a. Apply energy conservation to equate total energy at point A& and point B,
AMgR = IMgR + i MV’
Myt = daMgR
Applying Newton's 2™ law to the forces at point B

b = L ok
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AMek
N M},’ = — & }
R
or N= 3Mg downward

b. Since it 1s rolling at point B, it also has rotational kinetic energy there

dMeR =2MgR + )y Mv* + % MR’ w0’

With @ = vR
MR = (M + ¥ MV = 7 M°
v MgR
N+ My = M
Thus N = Mg downward

3. Let h; = 0.20 m the initial height of m.
hy = the final height of both masses.
vi; = the speed of m just before the collision.
vy = the speed of m, just after the collision,
var = the speed of m» just after the collision,

"
a. Before the collision, for m, mgh, = % mvy,
P
After the collision, for my mgh, = }'gml Vig
. . / !
After the collision, for m; mygh, = Vo my 2

Since both masses rise to the same height after the collision, they must have equal
speeds after the collision Vig =Vy, =V,
Since the collision is elastic, the total kinetic energy is unchanged
ylmlvhz :/]é’”!": f /zmzv_fl

or mgh =mgh, +m,gh,

mh =(m +m,)h, Eq. |
Lsing momentum conservation

MV, =0V, -,

or m\2gh = [m, —m, )ngiif

e
myy =y —my Lk,
2 2 2
Squaring both sides m h = (vn: -2mm, +m, )hf
Substituting inkq. 1 m, fm, + my }I:“:Jr = (m!; -2mym, + m,g )‘&,r'

. . . 2
Solving for the relation between the masses 0 =m, - 3m,m,

Or assuming  m, # 0 m, =3m,
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& M h = 20.20m = 0.050m 2

Solving Eq. 1 for &y I;f =} =- ;
m; +m, m, +3m,
b, After the second collision m; stops 3
and m; reaches maximum height A, 2

4. Imagine the door 10 be a compound pendululm n a gravitational

field whose “g”" equals the car’s acceleration. We are interested in
finding 1/4 of the peniod of the oscillation, the time it takes the door L ﬁ
to go from a maximum small amplhitude to 1ts equilibrium position,
The torque and rotational inertia are;
(L/2)simB

Dhagram similar to accompanying 5

r:—Ma(ffz)sinﬂ 3

I={ ML’ a

(4)ME = Her(%]sinﬂ 3

For small angles we have as —(y)( % )H !

1 . 1 #z*(2L) o
The distance the car travels is B'=Ea£‘=—a--[— =—0L 4



