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2000 Semi-Final Exam
Part A — Solutions

Al Let A =015m = the radius of the balloon
p=2x1.01x10° Pa= The pressure inside the balloon
my = 0.0042 kg = The mass of the empty balloon
F=(20+273) K = The temperature cf the air

a, The volume of the balloon is I = ; R %:-'I(U!S l‘n}: ~0.0141 m’

- (2024107 Pa)(u.n141 o’

‘)
£ )=1.l?moies.

RT (83117 mole K){293 K
Therefore the mass of the air inside the balloon is

m=nd =(1.17 moles|(78.8 ¢ f mole) = 33.7 g = 0.0337 kg
The scale reading will be equal to the force of gravitational attraction fm + mglg on the balloon
and the enclosed air minus the buovant force # = mgg = pgV acting on the balloon, where m,,
1s the mass of the air displaced by the balloon

F = (m + oy, ) 2 - Mg = (m + My — My )g

The temperature and volume of the air displaced 1s the same as that of the air within the balloon
but the pressure 15 only half as much.

Using the ideal gas law

= | —
Mlyie = Mg M=

nld = Elm =0.0168 kg

i
2

F, =(0.0337 kg +0.0042 kg ~0.0168 kg)(9.8 m/s?| = 0.21 N

b. The amount of air inside the balloon and its mass do not change. The volume of air displaced
and its mass both change by the amount

mys =0V’ = pia(R) = pin(11R) = (1.1 p4aR® = (1.1) myy = (1.1)°(0.0168 ke) = 0.0224 kg

A, =(m +my, -m‘mr]g = (0.0337 kg + 0.0042 kg - 0.0224 kg)[g.s mfs,l) ~0.15N

A2. a, Because of symmetry, =1 and fq=1; and fr=1.
No current flows through 3 or 6. Ii=10 and fs=10.

1, 4, and 7 are effectively in series with an equivalent resistance of K, =R+ R + R=3R
Similarly for the right branch containing 2, 3, and &.

The left and right branches are in parallel so, the equivalent resistance is given by

Copyright © 2000, AAPT



L1 Lz
IR IR 3

7
or R,=iR=3120]=180
b. Asstated in the argument in Part a. fi=10 and {0

All the other currents are equal
Li=b=bi-L=L-k=1L
Applying Kirchhoff's loop rule to the lett loop
0=60V-f(3R)
60V 60V 1
3RwQ 6

{

¢. When the ¢ircuit has been connected for a very long time, the capacitors are fully charged.
Nuo current flows through /7, 5, and 7. There is only one path for the current, through 2, 3. 4, 6,
and 8. These five resistors are effectively in series with

Fe={1/5160% - 12V

across cach. Applying Kirchoff's loop rule to the upper loop 0=1gt Vp— ey
O~ (Ve = C 2V =(4.0uFi24Vi=0.6 uC

Similarly for 2, =96 puC.

For the middle loop we have O=Vy+ Va+ Vo= Ve

Which vields = Clos = O3 p=40uF¥36V)=144uC

d. When the circuit has been connected for a very long time. no current flows through 7 or 7,
The same current flows through 3, 4. and 6.

=60V -3R/
o3 6
There is 2.0 V across each of the resistors J, 4, and # and capacitors / and 7. Hence the voltage
across Jand 8 is zero and fy=Jp =4

A3, a. The relativistic energy and momentum of a particle are given by

- I e : p=— ml -
~.u'|- “*’ h'_}_ ',u'l —{V .-'L‘)

where m is the particle mass and # 18 the particle speed. The energy and momentum of a photon
of frequency v are given by

fu
E, =hv By
Applving energy conservation, we have —[-_mr:j =kt + Aty (A3.1)
‘I|I|l] o ‘lI_/ i t._)‘
I )
" _hyy hy, | (A32)

while momentum conservation gives

EIIII —(l, / i')l 4 :
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Dividing (A3.2) by (A3, 1), we have

ml h(u. - 1:3)

Canceling common factors and solving for 17

i (Ui by . -
V=g 1o the right. {Ad3)
(U, + s
\ 2
e iy h | V
b. Salving (A3.1) for m m=—(U) +b;) ’1‘ —
c
I 22 , : ==
and substituting in {A3.3) {u1 uf,} = ﬁull(ul + Uz}h = (U| = uz)l
U! - U?/ (B
Eh e :
m=—-thy, (A3.4}
aiy

. In the rest frame of the particle the two photons must have equal and opposite momenta. |
travels to the right with fr:.quenu v and 2 travels Lo the left with frequency v, Inits rest frame

the particle's energy is mc’. Applying t.I'ILI‘g\- conservation we have

mes = Ao+ ho=2ho,

Combining this with (A3.4) me® = Qh«JU]UE =2hv.
2
Or b= oy =T

oy . - ) hu
d. Writing the given equation for photon | aisf = Fj— ey f'-;h%u (F Fz) ==
¢ ¢ c
KW
Or (7 +f-z)=—”;. (A3.5)
me
hyjugn hajugo
While for photon 2 Ay =-F s £ kit
c ¢ 4
F
or (A -F)= “;“_’3 {A3.6)
mo”
. 2h
Adding (A3.5) and (A3.6) 2F = —z(u, +,)

and comparing to [A3.])

Subtracting (A3.6) from (A3.5) we have

and comparing to (A3.2)




A4, Since friction is assumed non-existent, all collisions are elastic. Both momentum and
mechanical enerpy are conserved.
1.t v = speed of coin after it has lett the left-hand wedpe
Iy = speed of left-hand wedye after coin has lelft
1 = maximum height the coin reaches on the right-hand wedge
V = speed of right-hand wedge and coin when coin is at its highest point on the right-
hand wedge and at rest with respect Lo 1t

I all of the following, velocities to the right will be positive and velocities to the left will be
negative. Liguating the energy and momentum of the initial condition (coin at height h) and final
condition (coin has completely left left-hand wedpe).

Momentum conservation =MV +mv
G G yEe s .oom
Solving for }, Vp= - L (A4.1)
7
Energy conservation mgh=L My~ +1 mv’
y L2 |
. m m .
Substituting (Ad 1) Imeh = Ml —1') by’ = m[ —_ ] ¥
LM Mo

1" = S
m= M

a. Equating the energy and momentum of the initial condition {coin with velocity v, right-hand

wedge at rest) and final condition (coin at rest with respect to right-hand wedge).

MMomentum conservation mv = (m 4 .’H}V (A3

{Ad.2)

= 7 3
Solving for v°

Lnergy conservation T'P.lm"j %{m + Af }I*':' tmedf (Ad.4)
Combining (a4 3) and (Ad.4)

1
o

¢ : z
mv® = {m + .-Lfl . F] + 2mgH = —— v + 2mgtl

m+ M m+ M

1 12 1 M
Solving for ff H= L B3| ]vz

gl m+ M) 2glm+ M

. . L M ) aMeh) [ M l

Subs 4. this o] = M
Substituting (A4.2) into this f Y |I ooy I l mt M,
b. Let vi-= The speed of the coin afler it has left the right-hand wedge

Vi = The speed of the right hand wedge after the coin has slid off 1t
For the coin to again contact the left-hand wedge v, = #;. Equating the momentum and
energy before and after the coin's collision with the right-hand wedge
Momentum conservation my = MVy —mv,

m
Mo =—[v+ v
LY’ (v +vr)
: . o i Pl
Energy conservation %mv = % MV" + L mvy

Combining the Jast two equations and dividing by m and multiplying by 2.

4 —
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v . (1' Fvp) g

Y 114 i
2 09 2 2
Au® = mlL v 42y oy |t My
. 2 - / 1.2
Or regrouping terms {} = I{ M+ nr)wF F{2myv ), - (M" -m }1»

Solving this quadratic equation for vy _
ll 2 ; 3 e
—~2mv t -,J('lnn*) + 4{ M+ m){ M- m}l-‘"‘ 2w EVAM Y et My

1_"}._. —_— = —
2(.-\4 4+ m) .-1[_ M+ m) (M + m]
Cnly the plus sign gives a positive speed and a velocity in the correct direction,
(M —m)

3
M+ m )
IFor the coin to again contact the left-hand wedge  ve> Iy, or
M _m] m
VaE—V

.M+ m M
Dividing by v and cross multiplying, the condition becomes

[.-‘vf - mj] M= ( A+ najm

Or M =2Mm-—m” >0
Using the quadratic formula this becomes

g = 2
M:a-l[lmi"-.'llm‘+r$m‘|

=
s ]

Since M must be positive this becomes  Af > m(l + *.'E)

|
1
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Bla. Because the charge distribution is uniform, there is spherical symmetry and we can use
Giauss's Law to calculate the electrostatic field. This yvields

E=k —"’;';‘ &y

2 T f . . . e
where f#=+/x"+ )-2 + 27 . gom 15 the charge enclosed by a Gaussian surface of radius R, and &5

1% 4 unit vector in the B direction.

Regmon I A Gaussian surface of radius £ < b encloses no charge, so £, =0

Region Il: A Gaussian surface of radius ¢ = R > # encloses Geone =

| hus F_,'” =—k i—{n'ﬁ. ol £y = k% radially inward. (Bl.1)
R* R

Region [ A Gaussian surface of radius R > ¢ encloses Gene=—0Q = 0=10

Theretore Eyy =0

b. Region III: Since the field is zero, the potential 1s a constant throughout the region. Its value
at any point in Il is the same as its value at infinity Vip =10
, ) R, .
Region Il Vy 'R} - ¥y 1{;) == Evdl
2

Using (B1.1). dr = (—ER)(—.:.!'R) = epdR | and noting I"H({'} = l'}”(c') =0

" 2 R \
1'-;;(R}=I k%:}?‘: kQ :k{;_? k%:ki{‘l IE
£ r . .

r
=L

Region I: Since the field is zero, the potential 15 constant and 15 everywhere equal to 1ts value on

the boundary Vi=F,atR=b Thus ¥ = kQ[ 1 _% ]
[ |

c. Ineach region the total field can be ohtained by superposition, adding vectorially the fields
due to the individual spheres.
E=Eip+Eg
Inside each uniformly charged sphere the field due to that sphere is zero.
Region 1. This region is inside both spheres so both contributions are zero and E; =0.



Region 1l: The field due to the + ¢ sphere is zero in this region. The tield due to the -(? is
cyuivalent 10 that due 1o a - point charge at v — (L 1= 0z = b, Letting R = x1 + 3/ + (=~ Ak
represent the vectar from this point charge 1o the arbitrary field point, we have

R P Q{_w'i r,r:+r_:—h_]§j
c= k-

R (.1."1 bops +[:—h‘.l'j');"
Region I1I: In this region both spheres contribute to the field. Adding to the previous result the
contribution equivalent to a + Q) point charge at the origin, yields
p O(xi + 35 1 {2z hykd " L){x:'--l:__;f’;'+:k}

"E.".Ir =—f

Eyy =-

he

; 4 343 3 2 2172
(.r3+_p'+{:—hb‘] (r‘ a4 ]

d. Region 11 Since the field here is the equivalent to that due to two point charges, sa is the

potential.
i

1 1

Ll”'r - #Q I = o = | 7 =¥ 2

BEVE S o Wl - R il T VT T

Region I1: In this region. the contribution due o the inner sphere is equivalent to that due w a
pomt charge. The contrnibution due to the outer sphere 15 constant. To find this value, equate

across the boundary with Region (1L

\
i

: ! I
I.H :kQI__ =
i e 2 % 2
yX t ¥ (2 ) |
Region I: Since the ficld is zero, the potential is constant. To find this value, equate across the
houndary with Region (1.

1M
o=k s e
f ‘L)‘ L‘ f '_||

B2.a. Forthe wheel 7 =4mR? and a = @R since it is rolling without

slipping, The wheel is turning clockwise. IU's decelerating so the force ¢
producing the torque must be towards the front of the car. For the rotational
motion of the rear wheel about its axis
Ia= fpk i
{mﬁ'e i = _.f,fe #
< R
Therefore fr= —;ma toward the front.

b. Now consider the translational deceleration of the rear wheel



ma=Fb-p - fp where we

have chosen the acceleration direction to be positive, Therefore e

Fop=ma+ fp=ma+ _llma = :1'. il towards the rear.

¢. Consider the total external force acting on the car-wheel combination
which has total mass M + 2m
fr — g =(M+2m)a
e = tn +(.-'lff + Em)a =Limag 4 ||;.-’I.f + Em)a = (M + %m)a

2

d. Constdering the rotational motion of the front wheel about its axis
toc=(fp - J¢ )R
1,.pdd .
=mR —=[fs— fp)R
2 R ( g Ir )
Solving for f, /5= %ma + =1 mas (M 4 %Hz)a = (M + Em}a

towards the rear.

e. Consider the total external force acting on the front wheel
fo 4 Ju ~ Fop = ma
Frp = fp+ fg—ma= {M + %m)a HM _‘.nm)a— ma = (EM + %m‘)a

towards the front.

[. We will first calcalate the normal

torces exerted by the axles on the

towards rear,

il

In

carnage part of the car. Call these
normal forces N, and N.. Using
Newton's third law to find the honzontal
forces exerted on the carriage by the
axles and the brake, we have the force
diagram at the right. Consider the Ng

Nr |m

vertical forces acting on the block part of
the car. There is no acceleration in the Fer

vertical direction, so these must sum Lo

sero, Or
Ne+Np= Mg

aboul the center of mass must equal zero.

Feres

(B2.1)

Consider the torques acting on the block part of the car. 1t 1s not rotating, so the total torque

-
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.|k i . L [ ik
.ﬁ'Rt‘Eﬁ'R}Tf}15+.'h'r'l,|.'_}_j{i| _+RJ_"J"'IHE!'_D
. ; : 2 : IV _h
Rearranging terms = g = ?[{ Few=Vin )| E ' H_ - -"FHE]
Substituting the known F-p, Fo, and £,

2[{ g 3 Vi h
T L 5 - L\ 2 | it
N =N I_I 2.\ Ilm 2rr:r}|u|l2+ﬁ’ (M#}m)az

S R I[(z A+ 3m){h+2R)~ (M +3m) h] [hw +2R(2M + 1m)] (B2.2)

Adding ¢tB2.1) and (B2.2)
N 2 p(a !
2Np = f_[;? M+ 2 H( M+ w.'}]+ Mg

1 ah ak
oz i e bk
Np=2 Mg+ oM !_( M +3m)
And for the rear uxle Ny = Mg - N, = A Mz d—h M - g8 (’J M+ "-m}
2 2L L
‘These are the upward forces exeried by the axles on the carriage. Consider now
Hi

the vertical forces acting on the wheel, shown in the diagram at the right. Since

there 15 no vertical acceleration Lthese must sum Lo 2er0,
Hp — .-"»"} mg =1

Flnul]}; Re = ﬁl'-]c. + Fg = l( A "'._,ﬂ'.'}i_ + {{T— M+ {:R( A - 3?”) EHZ-:")
Simularly for the rear wheel
Mp = -I { M+ ..m)g - ﬂ Af UTH(Z.-H + Em) (B2.4)

g. For each wheel the maximum frictional force corresponding to the maximum deceleration 1s

M. For the rear wheel fn = oy
. . B ah . aR
Using the results of Part a and Part f. —ma = IuI_ { Af + Em)g ST M —T(E M+ 3m)
M+ 2m gl
Solving for a 25 max ,u( }”{’ - (B2.5)
mL+ [ Mh-+ (2 + Im)2R]
For the front wheel Sy = png
) :
5 l ah aft \
M+mla=p| =\ M+2m|g+— M+ —(2M +3m
|L_ 5 J 5 L( g b M2 J}

jzl[ M+ 2m)gl

T DM+ Sm)L - M+ (20 £ 3m)2R] i




h. Putting the given values inta (B2.5) and {B2.6). we have
0.6{6000 kg +2(200 kp))e(2.5m)

(200 kg)(2 5 m]l n.ﬁ[[nur_m kg (1.5 m} +[2(6000 kg}+ 3200 kg;'}z{ﬂ.:{ m)

Homay ~ 0.920
0.6{6000 kg + 2{200 kg))g[z.f} m|

[z(mnﬁ_kg) 51200 kg))(2.5 m) - ﬂ_ﬁl{ﬁf}f}ﬂ k(1.5 m)+ (2(6000 kg) +3(200 ke)j2(0 3 m}]

P T ”4:‘;:'-"1T

Uiy =

—

“r max

therefore the masimum deceleration the car can have 1s ey max = 0425g

i. Forming the ratio and substituting in the given values

! ah R -
ny L( M+ ._m}q i E M+ “:[ (-._M +3m_} _ (JM + Zm)gL +ahM + Za_.‘?(EM + 3m]
" ;[ T ﬂ; g m’e{,’ M + 3m) (M +2m]gl — ahM —2aR(2M + 3m)

ny (ﬁuuu kg +2(200 kg)jg(2.5 m)+ (0. 4"5}::} 1.5 m)(6000 kg + 2(0 425¢)(0.3 m]{_z{ﬁurm kg}+ 3(200 ke))
my {6000 ke +2{200 kg)le(2.5 m) - {0.425¢ {15 m){6000 ke] - 2(0 125¢ }(0.3 m){2(6000 k) + 3(200 ke))
np (6400 k)25 m)+{0425)1.5 mif6000 kg) +2(0 fﬂﬁ}fu 3 m){12600 ke)
e (6400 kg2 S m) - (04251 ‘\mHhI]i]ﬂ kj.._,j 2(0.425)0.3 m}(lzﬁmz k)

=257

M



