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2002 Semi-Final Exam
Part A — Solutions

Al. a The magnitude of the magnetic field inside an ideal solenoid 1s B=pnl
where the number of turns per unit length # is the inverse of the length per turn — the diameter  of
the wire.

1 1
n=r——=—
da 2n
The total resistance of the wire used to construct the solenoid is
{ !
R = —_— = 'G ~
p ,""1.1 }Trlz
The current e er'z
R pl
(1Y van? v
Combining to find B=p, L it =S
\ 21 K'.\_ ol ; 2pl
b. The self inductance £ can be found from LI=ND (Al-1)
where N is the total number of turns — the length of the wire divided by the circumference of one tum
.
. 23??'2
2
and Pis the flux through one turn $= Bﬂ‘rf = Iu,anhrrf - #fz f
i
: BT 2
combining with (A1-1) L= S = I R | - #ohy! b
! 2nn | 2R 4n
¢. The inductive impedance is Z; = @L. The total impedance of the circuitis Z = 4 R+ {mf,}z
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A2, a. The energy and magnitude of the momentum of a photon of frequency fare:

hE h
E=hf .
A ¢
Energy is conserved. Equating the energy of the particle before the decay to the total photon energy

after the decay
i 2

: == hf + hf . (A2-1)
y1-{v/c)?

Momentum is conserved, Equating the momentum of the particle before the decay to the sum of the
x-components of the photon momentum after the decay

my hf hf .

= ~¢osh, A2-2

'-Ifl-:-i—-—? P cosf + t cosf ( }
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my ﬁH,'II -{v a"c}z (th fe)cos
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Dividing (A2-2) by (A2-1)

J-(vic)}  me’ 2hf
Or %:EDSH
e ¢
v=ccosd  in the positive x-direction (A2-3)
R
b. Solving (A2-1) for me’ me? = 2hf - ('u Ir:}z
T 4 [ 2 . 2 ;
and substituting in (A2-3) mc™ = 2hf \1-(ccosO/c)” = 2hf y1-{cosB)" = 2hf sin0
m= @sinﬁ' (A2-4)
»

¢. In this frame, the particle has zero momentum, so the momentum of the final photons must be
equal and opposite — one along the +y-axis, the other along the -y-axis. If each photon's momentum
has the same magnitude, the photons must have the same frequency f*.

5 ; . 2 ;
[n this frame the particles energy is mc~. Applyving energy conservation

mc? = 2hf".
Salving for f* and substituting in (A2-4)
2 2
me 2h c
"= =| —=—sinf@ |— = fsinf
! 2 [H R fs

A3. The Planck length Ap, the Planck time tp, and the Planck mass mp depend only on the Newton's
gravitational constant (7, Planck’s constant /4, and speed of light in a vacuum ¢ and no other constant
Use dimensicnal analysis to obtain the equations. Let

[T] represent the dimension of time

[L] represent the dimension of length

g



[M] represent the dimension of mass

=

Since G has units Nem*kg’=(kg'm/s’) m’/kg"=m’keg's? its dimensions are  [LP[M)'[T)? for G
k has units J s = (kg-m’/s%)s = m'kg's”" its dimensions are LPMPT)Y forh
¢ hasunitsm/s =m's"  its dimensions are LYMIIITY fore

Let A= GorPed,

Then analyzing the dimensions
[ ML= MY [T L M TT L) M) T = [LP 2 My T,

Equating exponents of [L] 1=3a+2b~d

Equating exponents of [M] {0 =-a+h

Equating exponents of [T] =-2a-b-d

Solving these equations b=aandd=-3a then 1=3a+2a-3a=12a

S0 a=1/2,b=1/2, andd=-3/2 and

2
on\"? | (6.67x107'N m’ /ke”)(6.63x107] )
i

R =( J - SR =405x10 " m
¢ (3.0x10%m/s)
¢
Let £ =0
Then analyzing the dimensions EFMPT = L e 2,
Equating exponents of [L] 0 =3a+2b+d
Equating exponents of [M] 0=-ath
Equating exponents of [T] =-2a-b-d

Solving these equations b=a,d=-5a,andl =-2a-a+5a=2a

So a=1/2,b=12mandd=- 572

172
on\1? | (667107 IN - m® /kg?)(6.63x 10747 -5)

_ 2, T2 502 _ _ 43
IP—G L -[ 7 = - : =1.35x107"g
¢ (3.0x10%m/s)
Let my, = G*hbd.
Then analyzing the dimensions LI MIYTI® = (L )™ Ty 2t
Equating exponents of [L] 0 =3a+2b+d
Equating exponents of [M] l1=-atbh
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Lguating exponents of [T] = -2a-b-d

Sclving these equations a=-1/2,b=12,andd = 1/2
; 1:2
f -4 8
2w (R [(663x10715)(3.0x108m/s )
mP=G'”?h”‘cl'2=[—cJ :[ _“lL T l = 5.46 %10 kg
G (6.67x107'N-m” rkg’)

Ad. a Let L=0.75m, the length of the rod.

£ = the density of the unknown fluid

V = the total volume of the red

AL = mass of the rod
Since if the rod were fully submerged it would displaced 7.5x107 kgof fluid, 7.5x107™ kg =pV
In the present case the rod is only 2/3 submerged so The buovant force acting en the rod is
B=W,, =p{3V)g=2(75%10™ kg)g=(5.0x10™ kg)g
Since the system is in equilibrium the buoyant force balances the total weight force.
(5.(] %107 kg)g =mg+ALg

or S5.0x107" kg=m+ AL. (Ad-1)
Since J cannot be negative the largest value m can have is 50x107 kgzm,

b. The system oscillates and comes to rest. It must be 1n stable equilibrium. For this to occur the
center of gravity must be below the center of buovancy. The fluid is uniform. The center of
buoyancy is at the pud point of the submerged length. Measuring distances from the bottom end of
the rod, the location of the center of buoyancy 1s

Yo =%('§'L)=%L
Mass m 1s located at ¥ = 0, The center of gravity of the rod is at L/2. The combined center of gravity

of the system v, 1s
Vo 2 ME= DML
Yalm+AL)}g=0mg +(Li2)(AL)g
o
Ve - 2m+AL)
Requiring the center of gravity to be below the center of buoyancy
Yp =Y .
AL 1
e
Am+AL) 3
L <2{m+ AL)
or AL <2m
Combining this with (A4-1) 50x10* kg<m+2m

1
Or m>=(5.0x10 kg)=1.7x10™ kg
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e 50x107 kg~ 0.5 =
c. Solving (Ad-1Yfor A 1= X kg—-m : grams m
L 0.75 m

At its minimum value m_, =1.7x10™ kg =017 grams , 4 = 0.44 grams/m

At its maximum value m,,, =50x10™ kg =0.50 grams, A =0.
The graph 1s a straight line with negative slope between these two points.

Aln g/m A

044 [

0.17 0.500 ming
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B1l. {10) a. The semicircular hoop’s moment of inertia about its center 1s {=mR".

Using the parallel axis theorem to find the moment of inertia about the center of mass [_,

I=1,
where h is the perpendicular distance between an axis through the center of mass and a paralle] axis
through an arbitrary point,

b rrh 1

E

In this case h=

Im=I—.ﬁ"u‘11=rm'?2 [
LT

| =mhi" [l—iw
JI i

#

(20) b. Finding the moment of inertia about the stationary point, the
point where the hoop 1s in contact with the surface,

I=1_+ml = mR*[l —~ ﬂ; ] + mi’.

Using the Law of cosines to find L
o ER] 4AR?
") =

Substituting into the expression for J

( =
f=mR2[l-ilj+mJ; R* +(EJ
T L LA

cosé,

2

4R
- — 0% E‘W
i |

5,

A 4 4 4 e 9
I= mﬁz[ L=l p—tosdm le{ 2- -'CGSE-'].
S noom / S 1 J
For small amplitude oscillations (keeping only terms through first order in 2
N
cost = | and IzEmR‘[l——J.
4

. , o iR 2mgR

The restoring torque about the stationary point 1s T=—mgd = —m}{ )smﬁ & B,
T T

where the small angle approximation sin =& has been used.
Combining the last two equations in =TI,

l Py
e R”l——fo

vields
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Comparing this with the defining equation of simple harmonic motion ~ —w’x = a, gives an
expression for o,
5 2mghk ¢ e

W' = =
?‘IEmR"’(l— f]
N, H.

e

\

_ 27 27 [R(z-2)
For the penod T"..;. slip T;.-_. gy — = % =21 £
@ £ \} g
Y R(z-2)

(20} ¢. There is no horizontal force. The center of mass does not move from side to side. The y-
coordinate of the center of mass is
o
2R 2R{. & 2R
y=R-——costi= R——l 1——+...} R ——
T T # b4

including only terms through first order in 6. To this

approximation, the vertical position of the center of mass is !

constant and its acceleration is zero as well.  Thus \ 2A/m
EFY =N —-mg=ma, =0

or Vo= me, (= cm
Taking torques about the center of mass d4
R 2meR mg 4
T=-Nd=-N""sinf~- "5 §
m T N
where we have once again used the small angle approximation \
sinfd = &
=10
- Dmglt 8 = mRIE 1—"'3‘]0'1'
Fi W .r'
Comparing this with the defining equation of simple harmonic motion ~ —w’x = @, gives an
expression for o’
b 2mgR B 2g _ 2gm
e = -, Fi = = E'-—— ﬂ:".. '
amR* 1-——2] Rnl 1-— R(n*-4)
4 S S
. 2 27 |R{n* —4)
F ﬂ.l = d- Tq i T i — = gfr
or the period Tqp = I,——-Z-F 1"| T
y R(n* - 4)
)R m*~ 4)
Eﬂﬂ 2em IRhE_ﬂ (m-2)(m+2) |m+2
PR T - 7 — T
The ratio of periods is —~ = ; 3 = £ = I - =
T oo jHJRm—E] 2gmR(z-2) | 2a(w-2) NV 2z
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B2. (3) a. 1 the charge O is uniformly distributed, the charge density 1s p= g
The charge in a sphere of radius R/2 is =LipinR’ = %ifR;%rﬂi =20

{1 b, The x-axis is totally outside the cavity, By Gauss's Law the field outside a spherical
symmetnic charge distribution of radius R/2 centered on z = R/2 is the same as that due to point
charge at the center with the same total charge. So on the x-axis the field is the same as that due to
uniform charge distribution of total charge { and radius R,

From Gauss's Law for a spherically symmetric charge distribution

=k —-—Q‘Tf
R
where & is Coulomb’s constant and (. is the total charge enclosed by a Gaussian sphere of radius R.
Outside the sphere e = @
For|x|> R E=fk —R% in a direction out from the ongin.

13
3 Q g_qu I:" =T le,

Inside the sphere Q.= pinxl = TR A ==
1 . . : iy
For[x| <R E=k— Q}I;] =k %xl in a direction out from the origin.
X

(10} ¢. The total field can be considered the sum of two terms. That due to:
a sphere of radius R centered on the origin with uniformly distributed total charge +(.
a sphere of radius £/2 centered on z = R/2 with uniformly distributed total charge — (/8.

Qutside the large sphere both fields are equal to those due to point charges at their centers,

For|z|>R E=k%-—k—-Q—-? out from the origin,
z 8{z—R/2)

[nside the large sphere but outside the cavity, treat the cavity as a point charge at its center and the
sphere as an extended distribution

For ~R<z<0
. 8(z— R 2)’

out from the origin.

Inside the cavity, treat both the sphere and cavities as extended charge distributions.

= F2=Z o
N<z<RfZ £= sz —Q{—Ri_rl— Qf kQ{R 3 }=k Q, out from the origin.
8(R/2) R R 2R
< z RI2- : ,
Ri2<z<R E= Qf kw=fcg—'i+k9{ f z]=k Qﬁ oul from the origin.
R g(R/2) R R 2R

(13) d. Owtside the sphere, the electrostatic potenual is the same as that due to a point charge of +0
at the origin and a point charge of Q'8 atx =0,y =0, z= R/2.

1



Writing the distance from the origin as r= «,,"x? +y°+2°

and the distance from atx =0,y =0,z= R2. as P =ty 4 (z-RI2Y.
The potential is
vekLo gL e or = 2
r J,r + 2 8yxt+y  +{z-R/2)

(107 e. In order to get the electrostatic potential in the form shown, expand " ina bmnrma! series.

77
r:h',xl P (2= RI2) = +y 42 2R+ R 14 =r =R+ K a’4—r11,|1*£;+4
)

L 1zR 1R Y (7 z 3
perlo 8okl @ 0 0 IR IR, )10 om, )
% - - <.R R: ¥ Br 2 24f° y . Br 1Oy

8r Hl —
F 4.-" _
Only terms of order L and of order — : Lsucha& £ ] have been retained.
r P r
Companng to the expression for J given in 2Be a=10
) 3 R O[F kIR
Andwith z=F k bir=-— ‘“R=_ ( )
16 16
Which gives b= —%?-E

. = F prog : - 1
(3) f. A point charge of EQ at the origin and a dipole consisting of — EQ at (0,0, R/2) and + %Q at

the origin.
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