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2004 Semi-Final Exam
Part A = Solutions

Al a. At the instant the switch 1s closed, there 15 no charge on the capacitor and no voltage

across 1L Applving Kirchhoff's junction rule i =55+ 14
Applving Kirchhott's loop rule to the right loap O=(200 )1, - (30.0Q)1,,.
Solving for £, and then f bo=150, la=1.58, + 1, =251,

Applying Kirchhott's loop rule to the left loop
0=6.00V - (200 Q}, - {10.0 Q) - 6.00 V- {200 Q)1.57,,} - (10.0 Q){2.57,)
0=6.00 V—(30.0 Q)7 - (25.0 Q) =06.00 V- (550 QH,,

. - 6.00 ¥
Selving for the currents »* 00 0109 A, f.,=1.5(0.109 A)=0.164 A
and 7= 2.5(0.109 A)=0.273 A

{A solution wang parallel and series resistor combinationy is equally valid ]

h. When the switch has been closed [or a very long time, the capacttors are Tully charged.
Current no lenger flows in the capacitor branch and [a=10
Applying Kirchholf™s loop rule o the left loop

0 - 6.00 ¥V —(20.0 )7, - (100 Q) = 6.00 V — (30.0 Q)1

6.00 V
i — (L2000 A

a0 0

o=t

'

¢ The two capacitors are 1n series. Both have the same charge. The equivalent capacitance is
I I I I I 3

CoCC, 200uF A0 pE 400 uF

5} =133 uF

I'he voltage across the equivalent capacitance is the same as that across the 2000 £2 resiston.
Vo=V, =(200Q), ={200 QH0.200 A)=4.00 V.

So the charge Q.=0,=0 =C,V = (133 uF)(4.00 V) =533 uC A
B

AZ. Frirst tind the forces on the balloon, The weight tarce 15
W =mpo=pn\Vg oS
where g = 1.20 kg /m " is the density of the balloon, Vs s volume. and g 1s

the gravitational field strength, The buovant force 15
H=p Ve

2

—H 1~



where 2,15 the density of air. Since i1 1s assumed to be a hmear function of height, p = - ol
where 3, =1.29 kg/m’ is the density of air at sea level and # is the height above sea level. The

torces are in equilibrium at f, =1.00 km=1.00x% 10" m

pVeg=pVo=(p - tr}rr_}]l'ir"::‘r_ (A2 - 1)
), 129kg/m’ -120kg/m’ .
Solving this for o, (¥4 B 05 129 kgsoy - L.20 deg fon =9x 10" kg/m’
It 1000 m

a. Alter bemyg blown to a height of i =1.10 km, the forces are no longer balanced.
= B— W
P V= f g mfr)'r',q —p.Va.
Substituting (A2 |} into the above equation
o, Va=(p, — Ve —{p, — o e = —ali— b, Ve = —arAhVg.

e [ g !
Solving for the acceleration o = —

L )
The acceleration 18 propor tional to the dlap].u_erm.nt The motion is simple harmonie mouon

A

_ M |[n;um ke /m*}(9.8 m/s’)
with (i = e

15' A, 1I||| 1.20 kg /im
The balloon is released at rest at amplitude A = Jr = &1, — 100 m and st passes through its

equilihrium position at a time equal to one tourth 11s period.

T 2 T .
— e :i?{J 5.

4 e 2{0.0271 rad s}

=1.0271 rad /5.

b. The balloon passes through its equilibrium position with maximum velocity

v =ewA = (0.0271 rad /$)100 m) - 271 m/s.

A3, a. Inorder for mumimum sound intensity to be heard in the region along the x-axis with v >
Ay the distance between sources must be an odd half-integer multiple of the wavelength 2.
o
2x,={2n I]? =(2n HE_J" =l TaBeas
where v = 34 m/s, the velocity of sound m v, and 175 He < § < 625 Hz, the frequency of the
sound that produces minimum intensity, Solving (or the frequency
: (340 m /s : :
f = rm—u— (2 —“] (25 = 1)(100 Hz).
' dx, 4{{].33_‘1 m)
The frequencies in the possible range are
{, =300 Hz aind =500 Ha

b. In the region between the sources, source 5 emits a wave ¥, that travels to the left and source
S, emits o wave W that travels o the night.

W= A ﬁin(w.' + .5.'( M= ,1',,” W, =A mn{{rj.r = .ﬁ;(.x + A‘IIII}
where k= Tﬁ and i = 2mf .



Adding the waves 1o determine the resullant wave
Y=+, = A sin{mf il 1‘i,}] + A ::inf_mf - kl{.'}" o })
W= Asinfer - kv, Jeos(hy) + Acos|r— i‘x,,i}sm{ﬂ:r]
+ Asinfet = kx, Jeos(ky) = Acos{wr =k, Jsin(ky)
W= 2Acoslka )sin(on k_t“;l
Note: This equation has the correct y-dependence. The waves travel the same distance o reach
v =0. This point is an interference maximum. Any expression with
W= 2Acos{ka)sinfox - ky, + &)

where 8 1s o phase constant 1s valid.

¢, Minimum sound intensity occurs when cos{éy) =0, ie., Av=+(20+ 1)z /2. Solving for x,
1 > T4 2 :
+{..H hr +I[..n+1};1r_ +{HH I]le=+{un.+l]t

e 202m12) 4 4 f
(340 mis) . .
For f=300 Hr: = St WHOmIS) o v 283 m) = +0.283 m with n = 0.
4(200 Hz)
230 mis :
For = 500 Hz: (o 1_}{ Om/s) £(20 + (0170 m)= +0.170 m. +0.510 m
4(500 Hz)

with n=100, |

Ad. Selecting the v-axis perpendicular to the ramp and the a-axis parallel to the ramp in the
upward direction, the components of the gravitational sceeleration are

i, = —gsinf and o, =—poosth
where £1s the angle the ramp makes with the horizontal. The components of the mitial velocity
are: v, =V, 080 and Yy, = —¥, Sinf.
i At euch collision with the plane, the x-component of velocity does not change while the y-
conponent reverses s1gn. At the start of the first bounce vy, =+, sindl.

The v-displacement 1s given by O -3 1Y {(A4— 1)
Let v, =10 at s =0, the start of the first bounce. Let ¢ - 1. the time when the ball retumns Lo the
ramp v = 0, at the end of the first bounce, Substituting these values into (A4 - 1)
U=, sinik - gt‘ﬂ-:ﬂa'l"_

5 i g . o B e s 2vgsin 2wy,

Solving for 1 and chminating the ininal ume ¢ =, = ——= S fanf
grosf g

The velocity at the end of the first hounce, as the ball is about to impact the ramp again, 13

2y, 5inf
— =y, 8Inf

geost

Llpon hitting the ramp the velocity reverses o become v, = Ly, sind

v, =, +af=yv, sinfl- gecosflt = v sinf! - geosd



Each bounce has the sume v, and a, . so each bounce takes the same amount of time ¢

i . . . 2vosing 2My
I'herefore the time for N bounces 15 =Nt =N = U tanf, (Ad —2)

ceosfl @
Iere is no impulse in the x-dircetion, so the x-equations hold continuously. At the end of the
Nth bounce, the ball's velocity 1s perpendicular ta the ramp, v = 0. Substituting this inta the
cquation for the x-component of velocity.
iII = llih t “I'!I
. o4 . 2v, sin@ |
0=v,cosld—gsinth, = v cost—g smq N ‘

geost |
- 2N sinT 6 .
Dividing by v, cos{), f=l-———=1-2N1un"8.
cos
Solving for tan@ N f =~ (Ad - 3)
by
b The x-displacement 15 given by x=v t+4 e
The maximum displacement occurs af the end of the Nth bounce, time ¢, Combining (A4 - 2)
IAN 2Ny | vooo—
and (A4 - 3) r, = “tanf) = o = LN
2 F ONIN g
Substituting this into the x-equation,
'|r Yo o I | ;| i Vo S0 il .IIIII:M e II'Illl Bn
v={v,cosf) <IN |+ 4{-gsin0) VIV | = “cosONIN - 2= 20 sing
Lok ! -4 : & =i
Using the triangle to the right to determine cosf and sinf!
| 2 I
cosfi= | SN = ——
Vin+1 V2N -]
SR 2 Py i
el N g PRI TY. I M D

e WL —i f - f
? V2N +1 2 AN+l g NN

A
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Bl a2 The electrostatic force causes the centripetal acceleration that keeps the electron in its
circular orbit around the proton. Since the proton is assumed to be very massive, reduced mass
effects can be neglected.

I 'y
m— =k
' f
where m s the electron mass, e is the electron charge. vis its arbital velocity, ris its orbual
radius and & 1s Coulomb’s constant. Muluplying by » vields

1 L
myeT =4k —
}
The angular mementum of an object moving in a circle is L=mr.
Combining this with Bohr's postulate e = nfi
o o : 5 shy
Solving this for s i —|
|' wh o
m. r |
; : | nn’;e"
Solving this for — T e T ol
r k)
The total energy £ is the sum of the electran’s kinene und |Ji_‘rlunliu] Crergy.
IR ¢ m[.fm }
R (At Rt e
r 2 2nh)

(9,109 x 10 "]l'(s__tm X 107)(1.602 . 10 ]} 3 18510 ¥
Which 14 F === & _ P

2n(6.63x 10 /(2 o)) "

h. 1. As the elecuons are accelerated through the potential difference V. they gained kinetic
energy ¢V, The hydrogen is initially in its ground state £, After the collision the electron has
Kinetic energy _-;H-'I-',.." and the atom is in state mwith energy £ Applying energy conservation.
wi huve

eV + B = ,un,lif‘.'l,. tB1-1}

Bl



The electron enters the magnetic field £ with velocity v, perpendicular to . The force on the
electron causes 1t o move in a circular path with radius

N mi—.
r..
Soelving for my, my, = eBr .
SN o eBr)
Combining with (B1-1), ol st B (B1-2)
m

The two furthest out spols correspond to # = | and 2, The diameters of the paths are
25 = 009491 m and 2r, = 003980 1 The radin are £ = 0.04746 m and », = 0.01990 m

o 2 - (eBr)
Writing (B1-2) for these two cases ¢V = £ - ——+ ¢

2o
ar el = {'Eiﬂ;} (B1-3
2
o eBrV eBr,l F
and eV + E = u _}”‘]JI + K= ( ]”'I} ! ;—-'-
{.»Hr,jl_ (efirn)  3E
".}r L - LA, [ SO T
T 2 -4
Solving tor B
= ) |' =F \ 14 -."l ;o )
L XEm 218 % 1__51 _J_}{f}_l{}Eﬁx 107" kg} AR T

A 1

) 2e7(n = 1) B 1?‘ 2(1.602x10 " C) (fn_nmﬁ m)" — (0.01990 m) }

i, Substotuting imto (B1-3)

L_dpr) (en2xau™ C)(2:50 % 107 THO.09491 m) /2)

— -=124 ¥
RAIH E{Q.IGQXIU kg)

i The electron’s kinelie energy +mv " after the collision has got to be greater than zero. Using

poto represent the maxmmum (B 1-1)

E ( |
D R e Al Il
"o ! no

. . - . . 4 I
Expressing the energies in electron valis, thisis12.4 ¢V > 13.6 t:"l.-| I-—|
! "o

13.6 “

ar —— ]2
"o

or 136/1.2=113>n"

The maximum number of spots is 3.



B2 4 Using - to represent a unit vector in the z-chrection, = gz for r<b. (It is not

necessary to derive this result from Ampere’s Law )

o AR
h. |'|'.i : ﬁ_ - II II. ]
= NE, 2
It 15 also possible to derive this result from V=1Ll
It edge cifects are 1gnored =, bA

where i 15 the length and A is the cross-scetional area of the solenoid. Combining this with
Lf=ND = (nk}{BA)
vields A = ShBAL,

ty = snfi= jII.I”n:f.

ar
¢. The charge per und length on the inner cvlindrcal shell s A =+QFh.
Letting 7 represent a unit vector in the r-direction, Gauss's Law tor evlindrical symmetry vields

s 7 S

E=+——ir.

2me hy
¢
d. e = 'Irf.-'“E = A
stTE N

¢ Lse Faradays Law to find the induced elecine Dield at the Jocation of cach charged cylinder.

poim oy,
Gl =——"1.
clt
£ 15 constant around a circular path, the cross-section of the eylinder, ?I—.’ df = Elnr.
The magnetic flux is h, = RBA
where A s the enclosed area that has a magnete Deld. Thus
df df
Edmr=—-A—=-Alin—:
clt clt
: . . , Ad
Since f1s decreasing at o constant rate E2nr —.«Lu,,ﬂr?
AL
_ . . AS
For the inner cylinder, r=a and A =@, and E 2ma= —mr,u,.,nI_
o
. . te nee Al
['herefore e R
A
In order to oppose the decrease in £, £215 1n the same direction as /
£ g Al -
2, 7

[or the outer cylinder, r=¢ and A= ah”, since the field B =0for r=b6

and B 2me=—mh'pn 5
Al
. b AT
Therefore E = —’u"—-—,
! 2 Fa¥

- R3



b A -
. phprt s

with E =
' e A

Each cylinder experignces a torque caused by the electric force.

it F=ruF,.
i )
i, o gt AT - (Al
['or the imner cylinder $in o or e {}I - Mﬁw |= - H‘—'ii—xi—:
eli | 2 A 2 Ar

Since Fdecreases at a constant rate. L ulse changes al a constant rate.
AL pot (2 (0= 1)

Ar 2 At

.-HI,“ = Lt 2.

For the outer cylinder = 48 Lrx {—i_?jl —Mirp |= t Ho &'{‘
ot \ 20 AN 2 i

.-i'-.f;l_ i pnh O (0-1) .

Af 2 Ar

&1L = L a0,

and

foF=0for r<a and B=0 for r>h. Usmg 7, o represent the linear momentum

A

. . A T - R e Opnl -
density Fry =6 ExB=g)| —— |rx(uml)i=————¢ for a<r<bh
L 27 i | 2ahr
and Mo =0 tor r<ao and b<r

Using f,,, to represent the angular momentum density

P = P .i'ff__.”.
- S 5 Gt Ll = M nd .
[n the reeion o < r< i, foy SF R ={r'r'}><| —Q‘t—-’—.ﬂz _.(.:‘.I,Lm:l
: " L 2mthr 2mh

I'he angular momentum density is constant in the region « < r< b and zero omside. Therefore
the total angular momentum ongmally stored in the fields is

L., ={volume containing field)
Lo = [hﬂ{hj - u'ﬁ]]t — %" j: —%U‘uuu.’{:hl - uj)f
When the current 15 reduced to zero, this angular momentum goes to zero. Theretore the change
Im angular momenturn 1s

s Em

Loy = 20un{b - )z,

s



