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Solutions to Problems

Any correct selution should be awarded equivalent points. Suggested partial-credit points are

presented in square brackers at the vight marein. You may further break down the lisred poinis
info ane point morements. Where alternate methods are presented, a student shouwld be awarded
pownts from onfy one method. Students should nat be penalized in a subsequent part for using the

wring answer fo a previous part. (No doubie jeoparde ) IF it s clear they have done an
intermediate step, they showld gel credit for it even if they have not presented it For example, n
2.b, ifa student wrene down b = my R they shonid get 10 points credit

Points
1. a. Setung the coordinate origin at the top of the ¢lift, the horizontal position 15 given by
. vt
v= vt = (v cosB)e = (v cosd50" ) == (1-1) [3]
Taking up to be positive, the vertical position is given by
I . 1 & e I oy
v pm g = i G — = gy = ke e g -2
y=v i j“ (v, sin45.0 I Eh: % _E_rq.f. {1-2) (4]
; ; " 1 \E
Solving (1-1) for ¢ f= {1-3} [1]
i
S v .J.\-"IE_ U |" .JWEI_ X
and substiluting mmto (1-2) V= —= i =r—g— [2]
AL ow ]2 lk v, "
; x
Solvimg for v, vo= J 5 i
r—y

The shell lands at x= [8.0mand v=-4.00 m

[958 I'.I'L-":-:][]E.U m)’ _
And v, =, | —— - —— =12.0 m's [2]
180 m—{-4.U0m)

b. The v-component of the velocity 1s vy, —gt=v/! x.-'r'E—gr 2]
. . . ¥
Al its highest point v, =0 and [, = —— (1-d3 (2]
g2
A, Cw ) vt (120 mils)
The shell's x position iy x i L[ 1’,_ ‘ =L [— s ":I,.- =736 m [
V2 2l g 2(9Bmis’)



METHOD I: The explosion is an internal force and the motion of the shell's center of

mass is unchanged. [2]
(Note: Swnce fragment | has zero velocity after the explosion, the impuise ts totally in the y-
direction and the fragments land at the same rime |

Let x, be the landing position of fragment m,. Fragment I falls straight down. so

X, =736 m while X, =300m [1]

The defining equation of the center of mass of the two fragmenis s
(i +m,)x, =mx =nnt, . [2]
m, [ - .‘,,j .0 m-18.0 m 5

L — =114 2]

m, (X, -x ] 18.0 m-7.4 m

METHODR II: The explosion s an internal lorce and the total momentum of the shell is
unchanged. [1]
(Note: Since fragment | has zevo velocity after the explosion, the impulye ix totally in the x-
direction and the y-component of momentum s wniaffecred. |
For the x-component, momentum conservation gives

{m: + M, ] voo= UJ'ZI 0, = m\'-'_. [1]

; : ﬂm tm, }
The velocuty of m: after the explosion s v, = 1+ T [1]
I

Wi,
The fragment’s position after the explosion 15« = x +v.f, =1 + [1 +—']T (1-53%v  [1]
' i

where /, 15 the time i1 take the fragment to fall from its highest point to the ground. Since the -

component of velocity 1s unchanged by the explosion, the time to fall is the total time (1-3}
minus the tme to reach the highest point (1-4}

o o (1momh2 (120 mi)
f Py E*-‘E - [:lE.I:J |11-"5_} |I‘;J' BomusT )\H‘

= =1255y 2]

(The time can also be obtained by first finding the v-displacement af the highest point and then
finding the time to fall from that point to the ground. Using either method a time of 1.26 s should
gel 2 points credit)
Solving (1-53) for the mass ratio
—
m {x,-x V2 | (300 m—736 m}y2 £ i (i
 (12.0mis){1.255 5] o

1 W

2. a. Using energy conservation, the total mechanical energy when the probe is an infinie

distance from the planet equals the total mechanical energy just before the probe hits

K. +U_ =K, +U, [2]
Setling U =0, [1]
we have U, == Lim 12]
L4
where m 12 the mass of the probe. The probe’s kinetic energy 1s
K_= %mvl and Kp = -:fnwf," [2]

-
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where v 1s the probe's speed just before it huts the surface. Combining

3 CrAddm
LT =smy - - —— 2-13 I
b =g, * - = ( (1]
[ oM
Solving tor v, . we have V.2 1III|||x~'“ + —::;—- :

[2]

b. A central force, such as the umiversal gravitational force. causes no torque. Therefore angular

mementum 14 conserved. L_=1L, [2]
Angular momentum 15 given by L=Fxp=rxm, {2-2) (2]
Conservation gives F,®%mi=F X ”"F,; [1]
When the probe is very far away ,F_, ><rm_'| = prve_ sinf = b (2-3) [2]

When the probe has the largest speed 1t can have and still hit the planet, it will come in tangential
to the surface, or perpendicular to the radius.

IF P mf'h! =mv R {2-4) [2]
Combimning (2-2}3.(2-3), und (2-4) vl = nv R (1]
3 & h ~
or snlving for v, v o= I.'E : {2-5) [1]
ety ; . I il
Substituting (2-5% mte (2-1) Lot = =m| v— ] (2]
: R iy
b ]" | 26M
VT = = =
LR R’
| 2GM \('z_cm: 2]
= = = = “
/ Fi ||'j 2 h = H..
VR | 1
 H
3. In order for the mass to continue to oscillate back and forth, the spring force at maximum
extension must exceed the maximum force of static fnction. Letting A, equal the maximum
displacement afler the /" half cycle.
The mass stops oscillating when .|"-'_:|m1~ < F o (2]
The spring force has magnitude F =k [
The maximum force of static frictionis /= 4N =p My [2]
The oscillation stops if kA < i Mg, 1]
: Me (04001000 N
Or numerically A = HME ( i - ) = E4DD m (3-1) [1]
Tk {100.0 N/m )
Applying the work energy theorem to a single half ascillation
W +EK +U, =K, +U,, (3-2) (2]

where W, s the work done by non-conservative forces, friction m this case. At the extreme
displacements A and A ,,, the kinetic energy is zero
at x=A and x=A K=0and £, =0. [1]

=



The spring potential energy at A and A, 15

U =1kA° and el & [n
The work done by kinetic friction 15 W, ==fd==u M, [2]
where d 15 the total distance traveled, or d=4A+A, . [1]
W _o=-pu Me(a +4, ) [1]
Substiuning nto (3-2) - MglA + AL )+ ThAT =kA L (1]
poMe(A + A )=til4’ A ) =1k(A A )4 -4 ).
Dividing by (4, + A, ), pMo=1k(A -4 )
. du,Me
Solving for 4 A=A - —k—i’ [2]
. 20,200 )(10.00 N
Numerically A=A - " A —— ; = A — (L0400 m .
(100.0 Nfm)
Therefore each half cvele the amplitude decreases by 0.040 m= 4 0 cm 1]

Successive amplitudes (sturting with the il displacement) are
0180 my, (140 m, 010G m, 0.060 m, 0.020 m. (2]
A1 0,020 m the amplitude satisfies condition (3-1} and the mass remains at rest. Since 4, 15 to

the left of the equilibrium position and they alternate, the stopping point 15
0020 m 10 the left of the equilibrium position, [2]

The total distance traveled 1= B=A+2A « 24, +2A + 4,
O =180 mp+ 2{0 140 m)+ 2(0. 100 m )+ 2(0 060 m}+(0.020 m}=0.800 m [2]

4.3 The translational kinetic energy is K =M or K =W_=Fd [2]

where v is the time-dependent translational speed.
From Newton's Second Law with F the only force acting, the acceleration of the center ol masy

F
15 given by == [
g ) 7 L]
£ i
Starting from rest V=ar= — or d=1al" = — 2
¢ M Y 12l
By either method, the translational kinetic energy 13
1y FY TRy, R
K’_=%M[-—-I = or K,zF[_ = {4-1) [1]
o Mo M L 2M 20
The rotational kinetic energy 15 K, =1lw or K =16 |2]
where @ is the ime-dependent rotational speed, # 15 the angular displacement, 1 1s the torque,
and £ the disk™s rotational inertia aboul us center of mass, I=1MR" [
The torgue about the center of mass is |7 =iﬁ'>< F'|= Rl [1]

From Mewlon's Second Law for rotational motion the angular acceleration about the center of
T RF 2F
— (4-2) (1]

ITHLSS 15 PIVED b 3 I =— = —
= ! I IMRT MR

e



35 pa B

Starting from rest W= (it = —— or A=t =—
MR ¥ MR
By either method, the rotational kinetic energy is
- A(2FY  F L Fft py
K =i MR [— =—— ot K. siRfj—=— 4-3
=83 J.x MR M = ﬁj.-wa- M =
. k. (Ftem)
Dividing (4-3) by {4-1) S R —

K, (Fr'i2m)

K, L' ({MR)0' 1(wr)

Note: &0 2@ P B
K, iwnw Mhs v

Yeix ondy worth 4 points.

The anywer
Ir. The net work done by the force is equal to the change in kinetic energy.
W=AK +AK

Since the disk starts at rest both initial kinetie energics are zero and
Fiit Fh* 3FY
} =

W=K+K = (4-4)
2M M 2M
where 7 i the time it takes (o make the first rotation,
With uniform angular accelerslion and starting from resl, B=zat. {4-3)
; 2F
From (4-2) a=—
MK
and for a single rotation #=21m.
; 5 g . 28 22m)  2aMR
Salving (4-5) for ¢ - [ 2z} _
o (2F/MR) ;
E g C_3FY AR 2mMRY
And substituting tnto (4-4) W= . < - =inFR.

|
2 2M

— | Fhis s not volling withow! slipping and v 2 @i
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