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Semi-Final Exam - SOLUTIONS
Part A
Al {a) Since #; and R are in series, [y = fo Simce &7 and £ are in series, [; = /5 By symmetry,
the current [hmugh Ry and Ry, must be the same as the current through K- and 5 since the current
through A = the current through B and this current splits into two branches  one wath a

resistance of 28 and the other with a resistance of £ Therefore,

La=ds=fi=1 (AL-1)
and {; = /- {A1-2)

By the junction rule,

Lh=I.+1 {AT1-3)
Applving the loop mule from A 1o B across the top of the circuit,

e=I; R+ 2R (Al-4)
Applying the loop rule from A to B going through R, Ry, and &7 vields

=R t L0t v IR (A1-5)
Substitute (A 1-3) into (Al-4) and (A1-5).

=3 R+ LR {Al-6)
and e=20H Rt LR (Al-7)
Subtract, {A1-7) from (A 1-6) to obtain

1= 21, (AL1-5)

Substitute into {Al-6) or {A1-7} to find that



Then, from (Al-B)and (Al-1)

[re=ily=dpmpgm——

Using (A1-3)and (A1-2).

A
=1 ==
iR
£
th} 'I!r"xffrr. =
Rﬁ'l.‘h‘.“-'
and  f....=1 +,

Therefore, by substituting (A1-10) and (Al-11) into (A1-12)and (Al1-13),

£ 5
R Tl
Thus, R, .. —-¥

{c) Afler a very long time, no current will flow through the branch of the circuit with the

(A]-9)

(AL-10)

(A1-11)

(Al-12)

{Al-13)

{(Al-14)

(Al1-15).

capacitor, Therefore, &), £ and Rqare in senes and K5 £y, and R+ are m senes.  The current

through the top branch and the current through the bottom branch will then be

f=—
3R

(A1-16)

The voltage drop across R, 1s I/ and the voltage drop across A; and R, is 2/R, Thus, the voltage

drop across the capacitor 18 2/R — (R = IR

Using (Al-10),

il

tea | ™4

(Al-1T)



W G EA : (s
The charge on the capacitor is 0 = CF, | = :— . (AL-18)

{A2). Vaporizing the water will require energy:

a.uf =i = {00360k K226 el 0" J dhgy=81.4k7 (A2-1)
O 0360k
We tind that we have s A 2 0mol of water
U018k mal

Lising p}" = nRT, we find that we have 4% 1 maf of air

Since the volume is constant, the change in internal energy of the air and of the steam are given

b
ﬂ{ti‘ — HC,, ,:J". U‘ul-ﬂ
The total change in internal energy of the system must be zere:

sl +all Al =0, (A2-3)

wg e i
Substituting (A2-1) and {A2-2) into (A2-3 )

BLAKS +(nC, aT) .+l aT),, =0 (A2-4)

[erehl

1A + (2 0malW 2790 {mol K W, — 500K )+ (48, Imol W 2080 H{mol K WMT, —37TIN) =0,

T_:".i:m.' - 41'5 K ffﬁlz'jl'

There are a total of 2 0 mol + 48 1 mol = 50.1 mol of gas in the container, so from the ideal gas
law,

nRi (S0 tmad WB.31S fmaol e K HA10K )

% 2.00m" =86.7kPa (A2-6)
A A0

g =



A, {2y We can assume that there is an image of the source 8 n the perfecily reflecting surface
located a distance o2 beneath the surface. The problem then reduces to one of two point sources
a dhstance o apart creating an interference pattern on a screen a located a distance [>=d away
from the sources. We are mformed that the midpoint on the screen. v=0, is an interference
minimum. Since this would be an interference maximum for two point sources which are in
phase, then we can conclude thal the phase of the reflected wave is shified by an amount n. so
that the location of imterference maxima and interference minima are switched relative to the
“normal™ presentation, Consequently, the location of the first maximum is v=00L/2d.

In the event that vou forgot the formula, you will need to derive 11,
The distance from the object point source to a poinl on the screen is

)~ dr2)2 + 1. (- din?
o fly-drpEe a1 u_)

217 {A3-1)
The distance from the image point source to a point on the screen is
— | Irl.""LI':
ST A RTIE ) L Al (] k E--J-;—,——'—) )
P tA:‘_II}
The path length difference is then
el
e (A3-3)

where the approximation is true for L==y+d/2,
The relative phase shift due to the path length difference 1s found by dividing through by the
wavelength and multiplying by 2n, s0
il
Al = IR ]
V) (A3-4)

There 1s an additional phase shift of n from the reflection, so that the overall phase difference

hetween the waves 15

Ao =220
7 (A3-5)

Constructive interference occurs when Ap=2nn, where # 1s an integer, the smallest value for y

wilh constructive interference happens when n—1 or

Y
T g {A3-6)

(b} For the wave from the source above the boundary:

6y | T [ s S AT (AT



The wave below the boundary travels in @ medium that (1) doesn’t affect o or ¢, but {2) scales &
according to A—nk, since the wave velooiy s changed but the frequency s unattacted.
Consequently the wave equation from the second source i

L= .1:-i||{'rr-‘-; — it 1), {-"j't-_‘-"'H:'
The distance 2 is the same tor both, and 18 approximately equal to L for L>>d.

Adding the two waves in {A3-7) and in {A2-8) and making use of the given wigonometric
wdentity vields

e i . B

v+ ey Doleos [ =
- {A3-9)

in - ljm-f,l _ [u.- | bkt
L

{¢) The intensity 1s proportional to the wave-tunction squared, or
g, (A3-10)

The time average 1s found by integrating the above expression over one period and then dividing
by the period, or

B 5 - kL] o g [ AL
(A eos” [‘”—jj l = =in” [”—J — o =
i ST wepeh L {."—"l.?'-l I}
Everything inside the sin funchion can be written compactly as
g Pl 1k, ;i
] et e v Y ™14
g, {A3-12)
A change of varables to try would be
b=ty — (A3-13)
Then the expression for the time- averaged intensily becomes
g [t = LJRE e T
P e [ - }-—] [ i’ n
2 Fopei (A3-14)

where we have conveniently swallowed @/ constants into the proportionality. The integral 1s
fairly easy, but it doesn't matter, since 1t 15 also a constant independent of £ or L. So it can be
swallowed as well. leaving

tho— 1S
RS [ ‘_.'I__] :

{A43-15)



This 15 true for all values of the argument of the cosine function, including the value that
maximizes the cosing function, so

R |
|II||r:| .Ir||[lil1n.‘[ |j- -.-.-I-h.f.}

}

= {A3-16)
11 w 'n. T &
pives us the required relation for ‘ﬂmux
A4 {a) The mass of a sphencal shell of radius r and thickness dr 15
aHridmeidr = Artdmeidr = AP dndr (Ad-1}

To find the total mass enclosed by a sphere of radius . we add up the mass of all of the
spherteal shells:

n ol
M(R) = j' Ariamdy < AR o (A4-2)
2 n+3
L
whete 0 =28 : : (A4-3)
a3

{b) Gauss’s Law applied to a sphenical shell of radius R gives us
§ grid =—4nGM,,,.,., (Ad-4)
By symmeltry, g is constant over the surface of the spherical shell. g 1s radially inward, so
§gedd =—gank’ {A4-5)
When we substitute (Ad-3) into {Ad-4 1 and substitute {A4-2} for Mouciaes, we obtain

—gda R = -4rGCR™ (Ad-6)

Solving for g,

g=GCR™ {A4-7)
The gravitauon force on a star of mass m is then
b, =mg = mGCR"™! {A4-8)

{c) Applying Newton's second law to the circular motion of the star, we find that

gl {A4-9)
) f
Subsututimg (A4-8} into {A4-9} vields



mGCR™ = ”’f;'— (Ad-10)

=N GOR™ (Ad-11)
(d) If v1s constant, then " = &" so n = -2. (Ad-12)

{e) Apply Gauss's Law to a spherical shell of radius r, where r > £. Here, the mass enclosed
15 11‘..-,:-

gdrr’ =-4aGM (Ad-13)
g= (Ad-14)
e

Substituting mto (A4-9)

me‘l{ﬂ_ _my (A4-15)
il r
|
i JGMy (Ad-16)




Semi-Final Exam - SOLUTIONS

Part B
B1. (a) By symmetry, the x and y components of the clectnic o
field from different parts of the ring will cancel 4
E=F =10 i e !_h’_)'
Therefore, we need to add up the z-components of the P
electric field from the vanous parts of the ring.
The electric field due to an infimitestmal charge dy on the . 0
rng at a distance z from the origin is
la . ’
dE=—"4 ; (BI-1) . ?
dre,r »
X
where r=(h"+:2")"" (B1-2]

{ris the distance from a point on the ring to the point {0.0.2).) ¥ 1s a unit vector al the point
((L0.z) pointing away from the charge dg on the ring

The z-component is then given by

R L (B1-3)
j_
where @ 15 the angle between 7 and the z axis,
Substituting eq. (B1-1) into (B1-2} yields:
: 2dy
k. = (B1-4)

B die, 0
Integrating (B 1-4) around the nng and observing that r i1s the same for all pomts on the ring
vields

dme r ! 4!&,‘,_!'3

£ = |- 2§ e U (B1-5)

Using the fact that £, = £, = 0 and substituting (B1-2} mto {B1-3) gives us the answer.

208 (B1-6)

E=Ek= ey
dae (b +27)



(b) The potennal a distance raway from an infinitesimal charge diy 15 given by

el

dv = {B1-7}

dzer

Integrating around the ring, using the facl that 715 the same from every point on the ring to the
point {007}, and substituting (B1-2) fur r vields

g j_ﬂ’ff_. o 2 0 (B1-8)

dzer drmer 4mt R (-3l T

Note that it 15 easier to solve part (b) first and then to solve part (a} using

|
odrd i O _ L .5'_}{2_{_2]
dz dz\ dze (B + 27 dme (B +27)" (B1-9)
_ 20
- 41?8.1{331 . :1:].‘--'1
(¢} The potential energy of the system is given by
{f=—yl {B1-10)
Llsing {B1-8),
. (BI-11)
dae (b +2°}°
Factoring out &,
~1'3
T AL BPIN . | ‘ i ’ (B1-12)
4 45"& h ]

‘i

Using the fact thal |z| << & and using the approximation (1+ 1) = 1+ ar when x << |,

{B1-12) becomes

a5 } o
i [ :_1 (B1-13)
4mr b 28 )



{(d} Mechanical energy 15 conserved, so
Lz )+ Kiz, ) =0+ Ki0) {Bl1-14)

mince the charge 1s al rest at £ = », and using (B1-13),

Ty -
-g0 . =, -0 |
—2= 1] 'L; |+{_'];-—+—n;r NN Bl-15
47e bl b dme h 2 [ J { )

Il

Solving for o0,

1:2

-m:‘ 60z, :
v \4m;m,,h-‘J (B1-16)

(e} Weshall use Newton's Second |.aw:

F,o=ma=m— {BL-17)
dt”

The furce on the charge —q 1s —qE where E is given by (Bl-6). Substituting into (B1-17),

R (B1-18)

dre, (b + 25 dl”

Bul, z=<h so (b* +2' )" = p" and, after dividing both sides by m, (B1-18) becomes

dz__—qQz (B1-19)

et dae mh'

We recogmze that the differential equation

{4 .
& - (B1-20)

is simple harmome moton. The solution to (B1-20) is
Tit) = Acos e (B1-21)
Since z(0) = z,,, we find that 4 =z,

By companson with (B1-19), we find that



[

gt | (B1-22}.

= :
Adme mh’ |

Y,

We can denive an expression for the velocity as a function of tme by differentiating (B1-
"t] }
F

d=(t .
i) = Y = —Z, SIN e (B1-23)

et
{where @ is given by (B1-22}.)

Mote that an alternative method of solving part (d) 15 w note that the speed at the ongin will
be the maximum value of the magnitude of the velocity

i P
ais
0= 0 =| (22

(1

Mote that an alternative (easter) method of solving part (¢} 15 to note that the potential

-

energy found in (B1-13)1s of the form Lz =0 (0) + LT

Therefore, since it starts from rest, we know that z(7) = 4 cosax and that

d=(t}

wil}= =@z, sined = —v S0

i

v
Thus, a=—"2*and v__ was found in(B1-16).

“u

(1) According to the Biot-Savart law, the magnetic tield due 1o a moving infinitesimal charge
deg 15 given by

IIE‘:ﬂMS?cr:&dqrxr (B1-24)

dr dr
Since dB depends on the cross product v =7, @B must be perpendicular to both v and 7

By symmetry, when we add the magnetic field vectors due to all points on the rotating ring,
the v and v components wall cancel Therefore, we need to find the z components and add

them. Let @ be the angle between Band = .



dB. = dB cosg = L (B1-25)
r

Substituting v = b@ and (B1-24) into (BI-25)

, b
dp, = 220 (B1-26)

dx r

Integrating (B1-26) around the nng and observing that s the same for all points on the
ring vields

8, = [ Gag g o (B1-27)
CoAroor dr »

Using the fact that 8, = B, = 0 and substituting (B1-2) into {B1-27) gives us the answer

- J 7
H:H:k=i¢i;r—@??” (B1-28)
Fir+zZ )

{g) A point charge —.q moving with velocity v in a magnetic field B experiences a magnetic
torce
Fre = GV % B (B1-29)

However, since the charge 18 moving in the -k direction and the magnetic field is in the k
direction, vx B=0.s0 F =10

Mg



B2 {a) {1 Ihe fricnonal force acting on the hlock depends on the normal force on the
portion of the hlock that s on the rough surface. Therefore,

. FRAE
‘L_l'.'\\ _Lf_lg {B?—'l}

As the leading edge travels a distance L on the rough surface, fnetion does work:

W, = _{FJ,,I dx= f’”t;é';b;: i (B2-2)
0

5
=

Since the block stops after traveling a distance £, the work done by friction must equal the
imtial potential energy of the block.

mgH =W {B2-3)

Lk

Using (B2-2}. we obtain

iLm
P IR -1 (B2-4)
2
Therefore.
H 2 (B2-5)
2
{1} Substituting {B2-1) into Newton's Second Law yields:
— I d’
dics AR (B2-6)
L. dt’
Dividing both sides by m:
'x —ug
‘ f: ~HEX {B2-7)
it L
We recognize that the differential equation
d’x ;
— = - x {B2-8)
eft”

is simple harmonic motion



By comparison with (B2-7), we find that

we| £E) (B2-9)

S AN !
I'he pertod of SHM 15 — . The motion of the block commg to rest s ¥ of a cvele, 8o

ety
¢ 17

Tt L
f= =T ' (B2-10)

4 2\ ug )

(B (i} In this case, the leading edge travels a distance o on the rough surface, so friction
does work:

W

W, = [F,.de- j‘—’ﬁu:x: yd mg (B2-11)
i 27

n

Since the block stops after traveling a distance v, the work done by fricthion must equal the
inttial potential energy of the block.

ad g

meli =W, = (B2-12)
E " 2L :
solving for o,
—
& [P (B2-13)

(11} As the block slides on the rough surface, (B2-6) will hold as before. Thus, the monhon
will be 4 of a cycle of simple harmonic motion as before. Although the amplitude will be
e {given by B2-13) instead of £, the period of SHM 13 independent of the amplitude.
Therefore, the time for the block to stop will be the same as (B2-10}.

{c) (1) Unul the block is entirely on the rough surface, the force of frichion acting on the
block 1s given by (B2-1). Once the block s entirelv on the surface, the force of friction
15 constant:

F. = umg (B1-14)

Let Ax =the distance that the block travels on the surface with fnction after the entire
block is an the surface.



We set the imnal gravitational potential energy of the block equal to the wwial work
done by friction as the block comes 1o a stop:

L
mgff = J'I Eﬂ'x ~ pmeax {B2-15)
amel _
melf = —2— + Lmg ax {B2-16)

Solving for ax,

_H

!
= (B2-17)
2

=
-

The total distance traveled by the leadmg edge across the surface with friction 1s

St (B2-18)

a¥+ L =—+—
Ho 2

{11} While the block is only partially on the surface with friction, we have SHM as in

equation (B2-71. However, since the block does not comie to a stop until after the entire
block s on the surface, we do not complete one-quarter of the cyele of SHM this me.

The solution for SHM is given by

(1) = Asin Var = Asin u'ILf{ (B2-19)

where we have used (B2-9).

Take the derivative of (B2-19) 1o tind velocity,

1= 4 'I‘UE I——’ng (B2-20}
(1) =d == ¢ 2-
' Vi Nz }

We can find the velocity of the block just before the leading edge hits the surface with
friction usmg conservation of mechanical energy:

4

mgh =" (B2-21)
v=[2gH {B2-22}

We can evaluate the amplitude A by substituting (B2-223 for v when 1 = 0 into (B2-10):



|
J2gH - A 1EE (B2-23)

[.et r; be the ume that it takes the leading edge of the block to travel a distance £ across the
surface with friction. To find ¢;, we substitute (B2-24) into (B2- 197 and solve for ¢

-
[ [2HL L uet
'\,' it 1"1'

.
L= —sinT =
Vg V2u

{B2-23)

{B2-26)

MNow, that the entire block 15 on the surtace with friction, we need to find the additonal time
that it will take to stop it. Now that the entire block 15 on the surface, the force, and therefore
the acceleration, are constant. We need o find out how tast the block 1s going at the nstant
that the leading edge has traveled a distance .. We shall use the generahzed work-energy
theorem where the work done by friction is given by (B2-2)

maff =ﬂ£+% (B2-27)
Solving for v,

v=.J2gH — ugl (B2-28)
From {B2-14}, we see that the acceleration of the block 15 given by

a=-pug (B2-29)

Let t; = the time that it takes the block to come to rest after the entite block 15 on the surface
with friction.  Using the definition of acceleration and (B2-29) and (B2-28) we have

L [2H L
u ~Hg Veu' wg

R - o '
.n_:ﬂ_ll: 2eH — ugl (B2.30)



The total ume that 1t takes to stop is then given by adding (B2-26) and (B2-30).

e P T JAHE B (B231)
Vug  No# Neu' ug



