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USA Physics Olympiad Exam

DO NOT DISTRIBUTE THIS PAGE

Important Instructions for the Exam Supervisor

• This examination has two parts. Each part has three questions and lasts for 90 minutes.

• For each student, print out one copy of the exam and one copy of the answer sheets. Print
everything single-sided, and do not staple anything. Divide the exam into the instructions
(pages 2–3), Part A questions (pages 4–14), and Part B questions (pages 15–24).

• Begin by giving students the instructions and all of the answer sheets. Let the students
read the instructions and fill out their information on the answer sheets. They can keep the
instructions for both parts of the exam. Also give students blank sheets of paper to use as
scratch paper throughout the exam.

• Students may bring calculators, but they may not use symbolic math, programming, or
graphing features of these calculators. Calculators may not be shared, and their memory must
be cleared of data and programs. Cell phones or other electronics may not be used during the
exam or while the exam papers are present. Students may not use books or other references.

• To start the exam, give students the Part A questions, and allow 90 minutes to complete Part
A. Do not give students Part B during this time, even if they finish with time remaining. At
the end of the 90 minutes, collect the Part A questions and answer sheets.

• Then give students a 5 to 10 minute break. Then give them the Part B questions, and allow
90 minutes to complete Part B. Do not let students go back to Part A.

• At the end of the exam, collect everything, including the questions, the instructions, the
answer sheets, and the scratch paper. Students may not keep the exam questions. Everything
can be returned to the students after April 19th, 2023.

• After the exam, sort each student’s answer sheets by page number. Scan every answer sheet,
including blank ones.

We acknowledge the following people for their contributions to this year’s exam (in alphabetical order):

Tengiz Bibilashvili, Kellan Colburn, Samuel Gebretsadkan, Abi Krishnan, Natalie LeBaron, Kye Shi,
Brian Skinner, and Kevin Zhou.
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USA Physics Olympiad Exam

Instructions for the Student

• You should receive these instructions, the reference table on the next page, answer sheets, and
blank paper for scratch work. Read this page carefully before the exam begins.

• You may use a calculator, but its memory must be cleared of data and programs, and you may
not use symbolic math, programming, or graphing features. Calculators may not be shared.
Cell phones or other electronics may not be used during the exam or while the exam papers
are present. You may not use books or other outside references.

• When the exam begins, your proctor will give you the questions for Part A. You will have
90 minutes to complete three problems. Each question is worth 25 points, but they are not
necessarily of the same difficulty. If you finish all of the questions, you may check your work,
but you may not look at Part B during this time.

• After 90 minutes, your proctor will collect the questions and answer sheets for Part A. You
may then take a short break.

• Then you will work on Part B. You have 90 minutes to complete three problems. Each question
is worth 25 points. Do not look at Part A during this time. When the exam ends, you must
return all papers to the proctor, including the exam questions.

• Do not discuss the questions of this exam, or their solutions, until after April
19th, 2023. Violations of this rule may result in disqualification.

Below are instructions for writing your solutions.

• All of your solutions must be written on the official answer sheets. Nothing outside these
answer sheets will be graded. Before the exam begins, write your name, student AAPT
number, and proctor AAPT number as directed on the answer sheets.

• There are several answer sheets per problem. If you run out of space for a problem, you may
use the extra answer sheets, which are at the end of the answer sheet packet. To ensure this
work is graded, you must indicate, at the bottom of your last answer sheet for that problem,
that you are using these extra answer sheets.

• Only write within the frame of each answer sheet. To simplify grading, we recommend drawing
a box around your final answer for each subpart. You should organize your work linearly
and briefly explain your reasoning, which will help you earn partial credit. You may use either
pencil or pen, but sure to write clearly so your work will be legible after scanning.
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Reference table of possibly useful information

g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πϵ0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A

c = 3.00× 108 m/s kB = 1.38× 10−23 J/K

NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)

σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C

1 eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s

me = 9.109× 10−31 kg = 0.511 MeV/c2 (1 + x)n ≈ 1 + nx for |x| ≪ 1

sin θ ≈ θ − θ3/6 for |θ| ≪ 1 cos θ ≈ 1− θ2/2 for |θ| ≪ 1

Possibly useful integrals

∫
dx√
1− x2

= sin−1(x) + C

∫
dx

1− x2
= tanh−1(x) + C

∫
dx

(1− x2)3/2
=

x√
1− x2

+ C∫
dx√
1 + x2

= sinh−1(x) + C

∫
dx

1 + x2
= tan−1(x) + C

∫
dx

(1 + x2)3/2
=

x√
1 + x2

+ C

∫ √
1 + x

1− x
dx = −

√
1− x2 − 2 sin−1

(√
1− x

2

)
+ C

∫ √
1 + x

(1− x)3/2
dx = 2

√
1 + x

1− x
+ 2 sin−1

(√
1− x

2

)
+ C∫

dx

(1− x)3/2(1 + x)1/2
=

√
1 + x

1− x
+ C∫

dx

(1− x)3/2(1 + x)3/2
=

x√
1− x2

+ C∫
dx

(1− x)5/2(1 + x)1/2
=

(2− x)
√
1 + x

3(1− x)3/2
+ C∫

dx

(1− x)5/2(1 + x)3/2
=

1 + 2x− 2x2

3(1− x)3/2(1 + x)1/2
+ C

You may use this sheet for both parts of the exam.

End of Instructions for the Student

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN
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Part A

Question A1

Circus Act

In this problem we consider a small ball bouncing back and forth between two points. In all parts
below, the acceleration of gravity is g, collisions are perfectly elastic, air resistance is negligible, and
the impact points are at the same height. The diagrams are not drawn to scale.

a. Consider a ball bouncing between two inclined planes, which each make an angle θ < 90◦ to the
horizontal. The ball has speed v0 at the impact points, which are separated by a distance D.

i. The ball can bounce back and forth along the same path, as shown.

θ θ

D

For what values of θ is this motion possible? For these values, what is v0?

Solution
To go back and forth on the same path, the ball must impact the plane normally, which
means that θ is the angle of its velocity to the vertical. The range of the ball is

D =
v20 sin

(
2(90◦ − θ)

)
g

=
v20 sin 2θ

g

which implies

v0 =

√
gD

sin 2θ
.

Evidently, the motion is possible for any θ.

ii. The ball can also take one trajectory while traveling to the right, and a separate trajectory
when traveling back. Let ϕ ̸= 0 be the angle between the paths at the impact points.

θ θ

D

For what values of θ and ϕ is this motion possible? For these values, what is v0?
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Solution
The two paths have the same initial speed and the same range, which means the initial
angles of the velocity to the horizontal must be π/4 ± ϕ/2. Since the initial and final
angles to the normal are equal in the collision, the angle of the planes to the horizontal
must be θ = 45◦. Given this, ϕ can take any value in the range 0 < ϕ < 90◦.

Considering the range yields

D =
v20 sin

(
2(45◦ + ϕ/2)

)
g

=
v20 cosϕ

g

from which we find

v0 =

√
gD

cosϕ
.

As expected, this reduces to the answer above as ϕ → 0, and becomes infinite as ϕ → 90◦.

b. Now suppose the ball bounces within a hemispherical well of radius of curvature R. As in part
a.ii, it alternates between two distinct paths, with flight times t1 and t2 ̸= t1.

R

Find all of the possible values of R, in terms of t1 and t2.

Solution

From the previous question we know that the slope of the wall θ = π
4 at the collision points.

So D = R
√
2.

x displacement with t1 is

v0 cos

(
π

4
− ϕ/2

)
t1 = R

√
2 (A1-1)

y-component of velocity in the upper point is 0

v0 sin

(
π

4
+ ϕ/2

)
− g

t2
2

= 0

transforms into

v0 cos

(
π

4
− ϕ/2

)
= g

t2
2

(A1-2)

Dividing (A1-1) by (A1-2) we get

R =
gt1t2

2
√
2
.

Copyright ©2023 American Association of Physics Teachers



2023 USAPhO Part A 6

Only one R satisfies this, so the answer is unique.

c. Finally, suppose the well has a sinusoidal shape, described by y(x) = −L sin
(
2x/L

)
. The ball

takes two distinct paths with flight times t1 and t2 ̸= t1, and the horizontal distance between the
impact points is less than πL. Find all of the possible values of L, in terms of t1 and t2.

Solution

The slope of the wall θ = π
4 at the collision points. So z′x = −1 for one end and there is a

symmetric point on the other point of collision. −2 cos 2x
L = −1 has solutions x = ±πL

6 . So
we got two possible values of L.

i. Case of x = πL
6 corresponds to D = πL

2 − πL
3 = πL

6

v0 cos

(
π

4
− ϕ/2

)
t1 =

πL

6

and

v0 cos

(
π

4
− ϕ/2

)
= g

t2
2
.

Combining these two we get

La =
3gt1t2
π

ii. Case of x = −πL
6 corresponds to D = πL

2 + πL
3 = 5πL

6

v0 cos

(
π

4
− ϕ/2

)
t1 =

5πL

6

and

v0 cos

(
π

4
− ϕ/2

)
= g

t2
2
.

Combining these two we get

Lb =
3gt1t2
5π
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Question A2

Time is a Flat Circle

A particle of mass m and negative charge −q is constrained to move in a horizontal plane. In the
situations described below, this particle can either oscillate back and forth in a straight line or move
in a circle. (These two modes of motion are interesting because they generate linearly and circularly
polarized radiation, respectively, but in this problem you may ignore any energy lost to radiation.)

a. A large positive charge Q ≫ q is fixed in place a distance R directly below the origin of the plane.

i. When the particle is a distance r ≪ R from the origin, find an approximate expression for its
potential energy due to the charge Q to second order in r/R, up to an arbitrary constant.
You may use this result for the rest of the problem.

Solution
The potential energy of the particle, relative to infinity, is

V (r) = − qQ

4πϵ0
√
R2 + r2

≈ − qQ

4πϵ0R
+

qQr2

8πϵ0R3

where we have used the binomial theorem on the square root, since r ≪ R. The constant
doesn’t matter, so we could equivalently write this as

V (r) ≈ qQr2

8πϵ0R3
+ const.

ii. If the particle oscillates linearly with amplitude a ≪ R, what is its angular frequency ωℓ?

Solution
For simple harmonic motion, the potential energy V − V0 = 1

2kx
2, where the “spring

constant” k is related to the angular frequency of oscillation by ω =
√

k/m. Reading the
value of k from the expression above for V (r) gives k = qQ/(4πϵ0R

3), and therefore

ωℓ =

√
qQ

4πϵ0mR3
.

As usual for simple harmonic motion, the amplitude does not alter the frequency.

iii. If the particle performs circular motion with radius r ≪ R, what is its angular frequency ωc?

Solution
For a radially symmetric, parabolic potential, a circular orbit can be thought of as
simultaneous harmonic oscillation in the x direction and the y direction. Both oscillations
have the same angular frequency ωℓ as derived in part 1. So the answer is the same:

ωc =

√
qQ

4πϵ0mR3
= ωℓ.

Copyright ©2023 American Association of Physics Teachers



2023 USAPhO Part A 8

Note that the orbit radius does not matter, so long as it is small enough (r ≪ R) to still
correspond to simple harmonic motion.

b. Now an additional negative charge −q is fixed in place at the origin of the plane.

i. What is the equilibrium distance r0 of the particle from the origin?

Solution
With the additional charge at the origin, the total potential energy of the particle as a
function of r is

V (r) = V0 +
qQr2

8πϵ0R3
+

q2

4πϵ0r
.

Notice that the potential energy as a function of position has a ring of minima with a
certain radius r0. When the particle is not in motion, its rest position is somewhere along
the ring. The value of r0 can be found from V ′(r0) = 0, which gives r0 = R(q/Q)1/3.

ii. If the particle oscillates linearly with amplitude a ≪ r0, what is its angular frequency Ωℓ? Is
it higher or lower than ωℓ?

Solution
A linear oscillation involves the radius r oscillating around the value r0. Taylor expanding
the expression for V (r) in part b.i around r = r0 gives

V ≈ V (r0) +
1

2

3qQ

4πϵ0R3
δ2r ,

where δr = r − r0. One can read from this expression the value of the spring constant k,
which gives for the angular frequency ω =

√
k/m the result

Ωℓ =

√
3qQ

4πϵ0mR3
=

√
3ωℓ

so that Ωℓ > ωℓ. Evidently, adding the charge at the origin slightly stiffens the oscillation
in the radial direction.

iii. Now suppose the particle performs circular motion with radius r = r0 + δr, where δr ≪ r0.
What is its angular frequency Ωc, in terms of ωc, r, and δr? Is it higher or lower than ωc?

Solution
For circular motion with radius r + δr and δr ≪ r0, the orbit is above, but is very close
to the bottom of the ring of minima, r ≈ r0. For such small δr the force linearly depends
on r − r0, as in Hooke’s law, with

k = V ′′(r0) =
3Qq

4πϵ0R3

Now Newton’s second law gives
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−kδr = −mΩ2
cr,

with r ≈ r0. This equation has a solution for δr > 0 (so that the centripetal force is
inward):

Ωc ≈ ωc

√
3 δr

r0

Notice that the orbit frequency now explicitly depends on the orbit radius through δr.
So, unlike in the case of the usual harmonic oscillator, in this case one can generate
circularly polarized light with a wide range of frequencies by exciting circular motion
with different radii.

Since δr ≪ r0, the angular frequency Ωc ≪ ωc, so that adding the charge −q at the origin
has made the orbit much slower. Intuitively, this is because the set of potential minima
is a “flat circle,” so that the orbit frequency can get arbitrarily small for arbitrarily small
angular momenta. This is connected to Goldstone’s theorem in quantum field theory,
which states that spontaneously broken symmetries give rise to low frequency modes.
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Question A3

The Motive Power of Ice

In the Carnot cycle, a gas is heated at constant temperature TH and cooled at constant temperature
TC . Furthermore, no other heat transfer occurs, and all other steps of the cycle are reversible. The
laws of thermodynamics state that any such cycle must have efficiency η = W/Qin = 1− (TC/TH).
Below we will explore two other heat engines, which recover this efficiency in certain limits.

a. Consider the following heat engine involving one mole of ideal monatomic gas. The gas begins at
temperature T0, pressure P0, and volume V0, and undergoes four reversible steps.

P

V

P0

P0/α

V0

(1 + β)T0

T0

1. The gas is expanded at constant pressure until its temperature rises to (1 + β)T0.

2. The gas is expanded at constant temperature until its pressure falls to P0/α.

3. The gas is contracted at constant pressure until its temperature falls back to T0.

4. The gas is contracted at constant temperature until its pressure rises back to P0.

i. Which steps require heat to be transferred to the gas? For each such step, give the total heat
input in terms of P0, V0, α, and β.

Solution
Heat is added to the gas in the first two steps. In the first step, we have heating at
constant pressure, which has molar heat capacity cp = 5R/2, so

Q1 = cp∆T =
5

2
RβT0 =

5

2
βP0V0

where we used the ideal gas law in the final step. In the second step, the heat added to
the gas compensates for the work done while it expands, so

Q2 = (1 + β)P0V0 ln
Vf

Vi
= (1 + β)P0V0 lnα.

ii. Under what conditions on α and β would we expect the efficiency of this heat engine to approach
that of a Carnot cycle working between the same maximum and minimum temperatures?
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Solution
Since all the steps are reversible, we recover the Carnot efficiency when almost all the
heat transfer happens at the same temperature, i.e. when Q1 ≪ Q2. This holds when

β

β + 1
≪ lnα.

We should also consider the other two steps, which have heat transfer

|Q3| = cp|∆T | = 5

2
RβT0 =

5

2
βP0V0

and

|Q4| = P0V0 ln
Vf

Vi
= P0V0 lnα.

We have |Q3| ≪ |Q4| when
β ≪ lnα

which is stricter than the previous condition. Thus, we recover the Carnot efficiency
when β ≪ lnα.

iii. Find the efficiency of this heat engine for general α and β.

Solution
We calculate the net work throughout all four steps,

W = βP0V0 + (1 + β)P0V0 lnα− βP0V0 − P0V0 lnα

where the first and third terms are just the usual P∆V work, and the second and fourth
use the form done in an isothermal process. Simplifying gives

W = P0V0β lnα.

Therefore, the efficiency of the process is

η =
β lnα

(1 + β) lnα+ 5β/2
.

One way to check the answer is to note that the Carnot efficiency would be β/(1 + β).
Our general result reduces to this efficiency when the second term in the denominator is
negligible, which is precisely the condition we identified in part (b).

The second half of the problem is on the next page.
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b. Now consider a heat engine built around the freezing and melting of water, which occurs at a
pressure-dependent temperature Tc(P ). Initially, a volume of V of water is squeezed underneath
a piston, so that it experiences a total pressure P1, and the water is on the edge of freezing, with
temperature Tc(P1). The engine then undergoes four reversible steps.

1

P2

Tc(P1)

2

P2

Tc(P2)

3

P1

Tc(P2)

4

P1

Tc(P1)

1. A mass is slowly placed on the piston, raising the total pressure to P2.

2. The water is cooled to temperature Tc(P2) and frozen.

3. The mass is slowly removed from the piston, lowering the pressure back to P1.

4. The ice is heated back to temperature Tc(P1) and melted.

Assume that water and ice are incompressible, with fixed densities ρw and ρi.

i. What is the net work done by this engine, in terms of P1, P2, V , and the densities?

Solution
The system expands at a pressure P2 and contracts at a pressure P1, so the net work
done is

W = (P2 − P1)∆V = (P2 − P1)V
ρw − ρi

ρi
.

Concretely, this work used to raise the mass, so it could also be calculated as Mg∆H.

ii. Assume the latent heat per unit mass L to melt ice is large, so that freezing and melting
account for essentially all of the heat transfer in the cycle. What is the efficiency of the engine,
in terms of P1, P2, L, and the densities?

Solution
The heat transferred in is used to melt the ice, Qin = ρwV L, so

η =
W

Qin
=

P2 − P1

L

ρw − ρi
ρwρi

.

Note that the efficiency can also be expressed as η = 1− Qout

Qin
, but in order to find Qout

directly, we would need to know how to latent heat varies with pressure, which isn’t given
in the problem.

iii. Since we assumed all heat transfer occurs during melting or freezing, this cycle has the same
efficiency as a Carnot cycle. In the limit where P1 and P2 are very close, use this fact to infer
an expression for dTc/dP in terms of Tc, L, and the densities.
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Solution
The Carnot efficiency, for the same high and low temperatures, is

η =
Tc(P1)− Tc(P2)

Tc(P1)
.

Combining this with the result of part (b) gives

Tc(P2)− Tc(P1)

P2 − P1
= −Tc(P1)

L

ρw − ρi
ρwρi

and taking the limit of P1 ≈ P2, the left-hand side becomes a derivative, so

dTc

dP
= −Tc

L

ρw − ρi
ρwρi

.

This is equivalent to the well-known Clausius–Clapeyron equation, and this heat engine
was first devised by the brothers Thomson and Kelvin.
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STOP: Do Not Continue to Part B

If there is still time remaining for Part A, you can review your work for Part
A, but do not continue to Part B until instructed by your exam supervisor.

Once you start Part B, you will not be able to return to Part A.
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Part B

Question B1

Electric Roulette

Consider a cylindrical solenoid with radius r, length ℓ ≫ r, and n turns per unit length. It is made
of one continuous wire, with the top connecting back to the bottom as shown at left.

I

r

ℓ

Iro
ta
ti
n
g
ro
d

co
n
d
u
ct
in
g
ri
n
g

In the middle of the solenoid, part of the wire is replaced with the assembly shown at right. A
uniform conducting rod of mass m and radius r is connected to the bottom half of the solenoid,
and is free to rotate about the solenoid’s axis of symmetry. The end of the rod slides on a fixed
conducting ring, which is attached to the top half of the solenoid. This assembly and the solenoid
form one continuous conductor, carrying total current I.

a. What is the inductance of this system? Assume nr ≫ 1, so that the magnetic field produced by
the current in the rod and ring is negligible.

Solution

The magnetic field produced is B = µ0nI, so the flux through one turn of the solenoid is
µ0nI(πr

2). There are nℓ turns in total, so the inductance is

L =
Φ

I
= µ0n

2πr2ℓ.

b. When the rod is within a uniform vertical magnetic field B, find the torque it experiences in
terms of I, B, and r.

Solution

The torque is due to the Lorentz force on the current as it travels radially outward, from
the center of the disc towards its edge. Note that only the radial motion of the current
contributes to the torque, so we would get the same torque if the current traveled in a
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straight line from the center to the rim. In this case, the total torque is

τ = −
∫ r

0
IBs ds = −IBr2

2

where the minus sign indicates that the torque tends to slow down the rotation, when I
is defined in the direction shown in the figure. (This is consistent with defining positive
angular velocity and torque by the right-hand rule; if you defined it the other way around,
this equation and several others below would pick up a sign flip. Since we didn’t specify the
sign convention in the problem text, either set of signs received full credit.)

c. If the rod rotates with angular velocity ω, the electrons inside have a tangential velocity. Find
the electromotive force across the rod in terms of ω, B, and r.

Solution

At a radius s, the tangential speed is ωs, leading to a radially outward Lorentz force per
charge of ωsB. (The electrons also have radial motion, but this does not contribute to the
electromotive force; it instead contributes to the torque found in the previous subpart.) The
emf is therefore

E =

∫ r

0
vB ds =

∫ r

0
ωsB ds =

ωBr2

2
.

Now we will consider the dynamics of this system in some simple situations. For all the parts below,
neglect energy losses due to friction, resistance, and radiation.

d. First, suppose the system initially carries no current, and the entire system is inside a uniform
external magnetic field B0 parallel to the axis of the solenoid. If the rod is given a small initial
angular velocity, its angular velocity will oscillate in time. Find the period of these oscillations.

Solution

Using our results from above, the angular acceleration of the disc is is

dω

dt
=

τ

mr2/3
= −3IB0

2m
.

Kirchoff’s loop rule is E − LdI/dt = 0, which implies that

dI

dt
=

B0

2πµ0n2ℓ
ω.

Taking the time derivative of our expression for dω/dt gives

d2ω

dt2
= − 3

4π

B2
0

µ0n2ℓm
ω
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which is a simple harmonic motion equation. The period is therefore

T = 2π

√
4πµ0n2ℓm

3B2
0

.

e. Next, suppose there is no external magnetic field, B0 = 0, and at time t = 0, the system carries
current I0 and the rod has zero angular velocity.

i. The rod’s angular velocity ω(t) approaches a value ω0 after a long time. What is ω0?

Solution
The basic equations are similar, except now the magnetic field is sourced by the solenoid
itself, so instead of B = B0 we now have B = µ0nI. The results are

dω

dt
= −3µ0n

2m
I2,

dI

dt
=

ωI

2πnℓ
.

Initially I is positive, so dω/dt is negative, which then causes dI/dt to be negative. This
remains true until I falls to zero, at which point dI/dt and dω/dt both remain zero. In
other words, the solenoid speeds up the rod until it has given all of its energy to it.

Now that we know this, we can find the answer just using energy conservation,

1

2

mr2

3
ω2 +

1

2
LI2 =

1

2
LI20 .

This equation is equivalent to
I2

I20
+

ω2

ω2
0

= 1

where

ω0 = −
√

3πµ0ℓ

m
nI0.

This is the angular velocity attained after a long time, when I approaches zero. Again,
the opposite sign would also receive full credit.

ii. Find ω(t)/ω0 in terms of ω0, t, n, and ℓ. You may use the integrals on the reference sheet.

Solution
Plugging the energy conservation equation into our equation for dω/dt, and writing it in
terms of ω0, we have

dω

dt
= −ω2

0 − ω2

2πnℓ
.

Separating and integrating yields

t

2πnℓ
= −

∫ ω

0

dω′

ω2
0 − ω′2 = − 1

ω0
tanh−1

(
ω

ω0

)
.
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Solving for ω gives
ω(t)

ω0
= tanh

(
−ω0t

2πnℓ

)
which has the right limiting behavior.
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Question B2

Fast and Furious

A space program wants to accelerate a spaceship of final mass m = 100 kg to relativistic speeds to
observe distant stars. They have two proposals to evaluate.

a. Their first proposal is to use traditional rocket propulsion. A rocket of initial mass m0 and final
mass m that expels propellant with exhaust speed u relative to the rocket will reach a speed

v = u ln

(
m0

m

)
.

Suppose the desired final speed is vf = 3c/5. In the subparts below, neglect relativistic effects
and give your answers in the form 10n, where n has at least two significant figures.

i. If the rocket has exhaust speed u = 3.5 km/s, what must its starting mass be in kilograms?

Solution
Plugging in the numbers gives

m0 = mevf/u = 100 kg · e0.6×3×108/3.5×103 ≈ 1022337 kg

Equivalently, the exponent is n = 2.2× 104.

ii. If the propellant is exhausted at rate 7.0 kg/s, how long does the acceleration take, in centuries?

Solution
The result is

t =
m0 −m

7.0 kg/s
≈ 1022336 s ≈ 1022326 centuries.

Equivalently, the exponent is n = 2.2× 104.

iii. If the energy density of the fuel is 2.0×107 J/kg, how much total energy is required, in Joules?

Solution
The energy required is

E = (m0 −m)(2.0× 107 J) = 1022344J.

Equivalently, the exponent is n = 2.2 × 104. When working with such absurdly large
numbers, exponents essentially always stay unchanged.

For the rest of this problem, you should account for special relativity.

b. Another option is to use a spaceship with constant mass m, propelled by light produced by lasers
on Earth, with total power P = 6× 1012W. The light evenly impacts a sail on the spaceship,
and reflects off the sail directly back towards the Earth. Neglect the orbital motion of the Earth,
and give all your answers in the frame of the Earth.

i. What is the force on the spaceship when the spaceship has speed v?
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Solution
Let β = v/c, where v is the ship’s speed, and consider a piece of the beam with total
momentum dpx, in the Earth’s frame. In the ship’s frame, this momentum is dp′x =
γ(1− β)dpx, and after the collision the momentum simply flips sign, dp′xf = −dp′x. Thus,

transforming back to the Earth’s frame, the final momentum is dpxf = −γ2(1− β)2dpx.
The change of the spaceship’s momentum, still in the Earth’s frame, is the difference

dPx = −(dpxf − dpx) =
2

1 + β
dpx.

To find the force on the spaceship, we need to find the rate at which the beam impacts
the spaceship. Accounting for the spaceship’s motion, it is dpx = P

c (1− β)dt, so

F =
dPx

dt
=

2P

c

1− β

1 + β
.

Alternative solution: In the Earth’s frame, if the photons in the incident beam have
frequency fi, then they are reflected with frequency

ff =

√
1− β

1 + β

√
1− β

1 + β
fi =

1− β

1 + β
fi

where we applied the relativistic Doppler shift formula twice, since the photons are first
absorbed by the moving rocket and then reemitted by it. Applying conservation of
momentum, and using the fact that the momentum of a photon is related to its energy
by E = hf = pc, we have

F =
dN

dt

h

c
(fi + ff ) =

dN

dt

hfi
c

2

1 + β

where dN/dt is the rate at which photons collide with the sail. It is related to the rate at
which photons are emitted from the source on Earth, dNem/dt, by

dN

dt
= (1− β)

dNem

dt
.

Finally, since the power of the laser is P = (dNem/dt)(hfi), we have

F =
2P

c

1− β

1 + β
.

ii. How long will it take to accelerate the spaceship to speed vf = 3c/5, in seconds? You may
use the integrals on the reference sheet.

Solution
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In the Earth’s frame, the relativistic momentum of the spaceship obeys

dPx = mcd

(
β√

1− β2

)
= mc

dβ

(1− β2)1.5

Combining this with our expression for the force gives

2P

mc2
dt =

dβ

(1− β)2
√
1− β2

.

Integrating both sides and using an integral on the reference sheet gives

2P

mc2
t =

∫ 0.6

0

dβ

(1− β)2
√
1− β2

=
5

3
.

Therefore, the time is

t =
5mc2

6P
=

4.5× 1019

3.6× 1013
= 1.3× 106 s

iii. At the moment the spaceship reaches this speed, how much total energy has been used to
power the lasers, in Joules?

Solution
The energy is just 5mc2/6 from the result in the previous problem, so we get 7.5× 1018 J.
For reference, the US consumes roughly 1016 J of electricity per day. For more discussion
of this propulsion method, see this paper.

The following results from relativity may be helpful:

• The Lorentz factor is defined as γ = 1/
√

1− v2/c2.

• An object of mass m and velocity v has momentum p = γmv and energy E = γmc2. The
force is defined by F = dp/dt.

• The momentum and energy of light are related by E = pc.

• In a frame S′ with velocity vx̂ relative to a frame S, the energy and momentum are

E′ = γ(E − vpx), p′x = γ(px − vE/c2).
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Question B3

Starry Messengers

In 1987, light from supernova SN1987A was detected by telescopes on Earth. The supernova
occurred in the Large Magellanic Cloud, a distance d = 1.5× 1021m away, making it the closest in
centuries. Observations of this event tell us a remarkable amount about elementary particles.

a. Both light and neutrinos were produced in the core of the supernova. Neutrinos are elementary
particles which interact extremely weakly with ordinary matter. Detectors on Earth saw a few
dozen of these neutrinos, in a burst which occurred about T = 3hours before the light arrived.

i. One explanation of these observations is that the neutrinos’ speed v was faster than the speed
of light c, violating special relativity. If this is the case, find v − c in m/s.

Solution
If the light took a time t to arrive at the Earth, then ct = v(t− T ) = d. Approximately
solving for v − c, using the fact that v is very close to c, gives

v − c =
c2T

d
= 0.65m/s.

ii. Another explanation is that the light was slowed down by the gas in the solar system, while
the neutrinos always moved at speed c. Suppose the solar system has a uniform index of
refraction n within a radius D = 1013m. What would n have to be to explain the time delay?

Solution
The time delay is T = (n − 1)D/c, and plugging in the numbers gives n = 1.3. Given
how thin the gas in the solar system is, such a large value is implausible.

Neither of these explanations seem plausible; the modern accepted explanation is that the
light was trapped for some time inside the supernova, while the neutrinos were able to leave
immediately. Therefore, for the rest of this problem you should assume special relativity holds.
The results listed on the previous page may be helpful.

The neutrinos did not all arrive at once. The first arrived with an energy of about E1 = 40MeV,
and the last arrived about t = 10 s later with an energy of about E2 = 20MeV.

b. One explanation of these observations is that neutrinos have a small mass m, so that when they
have energy E ≫ mc2, their speed v is slightly slower than the speed of light.

i. Find an approximate expression for c− v, to leading nontrivial order in mc2/E.

Solution
We start with the equation for relativistic energy:

E = γmc2

where γ is the Lorentz factor defined as: γ ≡ 1√
1−β2

where β ≡ v
c .
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Let β = 1− δ, where δ ≪ 1. Then,

γ ≈ 1√
1− 1 + 2δ

=⇒ δ ≈ 1

2γ2
.

Note that δ = 1− v/c, so

c− v = cδ ≈ c

2γ2
=

m2c5

2E2
.

ii. Using the information above, numerically estimate the neutrino mass m, in units of eV/c2.

Solution
We compute a relationship between v1 and v2, the velocities of the first and second set of
neutrinos, using the time delay. From the same equation as 1(a),

v1 − v2 =
10s× c2

d
= 6× 10−4 m/s.

We have

c− v1 ≈
m2c5

2E2
1

, c− v2 ≈
2m2c5

E2
1

.

Then,

v1 − v2 =
3m2c5

2E2
1

.

Solving for m gives

m =

√
2(v1 − v2)

3c

E1

c2
= 46 eV/c2.

c. Another explanation is that the neutrinos did not travel in straight lines, but rather were deflected
by the intergalactic magnetic field. Suppose this field is uniform, B = 10−13T, and directed
perpendicular to the line joining Earth and the supernova, and that neutrinos have charge q = ϵe.

i. If a neutrino has momentum p, then in the presence of the magnetic field, it travels in a
circle of radius r = p/(qB) ≫ d, and its path to the Earth has a total length ℓ. Find an
approximate expression for ℓ− d, to leading nontrivial order in d/r.

Solution
We are computing the difference between the arc length of a small arc and the distance
connecting the endpoints. If the arc length is ℓ, the angle subtended is θ = ℓ/r. The
distance connecting the end points is

d = 2r sin
(
θ/2
)
= 2r sin

(
ℓ

2r

)
.
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Then, Taylor expanding the sine gives

ℓ− d ≈ ℓ− ℓ+
ℓ3

24r2
=

ℓ3

24r2
≈ d3

24r2
.

ii. Using the information above, and assuming the neutrino mass is very small so that the effect
in part b is negligible, numerically estimate ϵ.

Solution
The radius of the path is

r ≈ E

qBc
.

Substituting gives

ℓ2 − ℓ1 =
d3q2B2c2

8E2
1

.

Then,

q =
2
√
2E1

Bcd

(
(ℓ2 − ℓ1)

d

)1/2

=
2
√
2E1

Bcd

(
c∆t

d

)1/2

≈ 3.6× 10−15 e.

Then,
ϵ ≈ 3.6× 10−15.

Since the effects of a neutrino mass and charge add, and we know neutrinos have mass,
this result yields a (very strong) upper bound on the possible charge of a neutrino, which
as far as we know could be exactly zero. For more about the physics of SN1987A, see
this paper.
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