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USA Physics Olympiad Exam

Instructions for the Student

• All smartphones, tablets, smartwatches, and other internet-connected devices must be handed
in before the exam begins. You may only use the desktop computer, laptop, or Chromebook
designated for taking the exam.

• You must remain in the exam room for the entire testing period.

• You should receive:

– This instruction page

– A reference sheet (on the next page)

– Problem cover sheets

– Blank paper for solutions and scratch work

Read this page carefully before the exam begins.

• You may use a calculator, provided its memory has been cleared. You may not use any
symbolic math, programming, or graphing features. Calculators may not be shared. Cell
phones or any other unauthorized electronics may not be used at any time while the exam is
in progress or while exam materials are present. Outside books or references are not allowed.

• When the exam begins, click on the link for Part A. Once you click “Start,” a timer will
begin. You will have 90 minutes to complete three problems. Each problem is worth 25
points, but they may differ in difficulty. When finished, you may review your work, but do
not proceed to Part B.

• After 90 minutes, your proctor will collect your Part A answer sheets. Do not include scratch
work. You will then have a short break.

• After the break, click on the link for Part B. You will again have 90 minutes to complete
three problems. Each is worth 25 points.

• At the end of Part B, you must return:

– Your Part B answer sheets (no scratch work)

– All blank and used scratch paper

– These instruction pages
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• Do not discuss any part of the exam until April 11th. Any violation may result in
disqualification.

Instructions for Writing Your Solutions

• All work must be done on the provided blank pages. You may use as many plain and/or graph
sheets as needed for each problem. Work outside of these pages will not be graded.

• To help with grading, please draw a clear box around your final answer to each subpart.

• Organize your work clearly and explain your reasoning concisely. Partial credit may be
awarded for well-reasoned work, even if the final answer is incorrect.

• You may write in either pencil or pen, but make sure your work is legible and scan-friendly.
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REFERENCE SHEET

Fundamental Constants

g = 9.8 N/kg G = 6.67× 10−11 N ·m2/kg2

k = 1/4πϵ0 = 8.99× 109 N ·m2/C2 km = µ0/4π = 10−7 T ·m/A

c = 3.00× 108 m/s kB = 1.38× 10−23 J/K

NA = 6.02× 1023 (mol)−1 R = NAkB = 8.31 J/(mol ·K)

σ = 5.67× 10−8 J/(s ·m2 ·K4) e = 1.602× 10−19 C

1 eV = 1.602× 10−19 J h = 6.63× 10−34 J · s = 4.14× 10−15 eV · s

me = 9.109× 10−31 kg = 0.511 MeV/c2

Useful Approximations

(1 + x)n ≈ 1 + nx+ n(n− 1)x2/2 for |nx| ≪ 1

ex ≈ 1 + x+ x2/2 + x3/6 for |x| ≪ 1

sin θ ≈ θ − θ3/6 for |θ| ≪ 1

cos θ ≈ 1− θ2/2 for |θ| ≪ 1

Useful Identities
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You may use this sheet for both parts of the exam.

End of Instructions for the Student

DO NOT CLICK THE LINK FOR PART A UNTIL YOU ARE TOLD TO BEGIN

We acknowledge the US Physics Team coaches and other people for their contributions to this year’s exam
(in alphabetical order):

Tengiz Bibilashvili, Kellan Colburn, Natalie LeBaron, Rishab Parthasarathy, Mai Qi, Kye Shi, Heng Yuan
and Elena Yudovina.
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Problem A1: Shake It

Most hairy mammals shake after getting wet; shaking the water off is energetically advantageous
to waiting for it to dry on its own. In this problem, we investigate the mechanics of shaking off
water. For simplicity, we will model animals as solid cylinders with the sides covered in fur. You
may ignore gravity throughout the problem.

a. We can model the shaking by assuming that the angular position of the cylinder undergoes a
sinusoidal oscillation: θ = A cos(ωt). (The rotation is about the axis of rotational symmetry.)
Letting the radius of the cylindrical animal be R, derive an expression for the magnitude of the
acceleration of a point on the surface of the animal under such a motion.

b. For the rest of this problem, rather than modeling sinusoidal motion, we will assume that the
cylindrical animal is simply spinning at constant angular speed ω. Wet fur tends to separate
into cylindrical clumps of radius r ≪ R. A droplet of water on the end of a clump of fur will be
separated from it if the centripetal force overcomes the forces due to surface tension. Derive an
approximate relationship (valid up to scalar numerical constants) between the surface tension σ,
the radius r of the fur clump, the radius R of the animal, the angular speed ω, and the density ρ
of water. The diagram below show the cross-section of the animal, showing four clumps of fur
with droplets on their end.

c. Experimentally, it is observed that all mammalian fur forms clumps of similar radius. Under the
assumption that different animals all have the same density and are simply scaled copies of each
other (i.e. larger animals are both longer and fatter), the relationship between an animal’s mass
M and its angular velocity of shaking ω is of the form ω ∼ Mn: find the value of n.

d. Shaking requires energy, which we can crudely model as the rotational energy of the corresponding
cylinder. An alternative strategy for the animal is to simply air-dry their fur, which requires
energy to evaporate the water. Assume a wet animal has approximately 5% of their body weight
in water, and has to supply all the energy for evaporating the water. Our model predicts that
for some animal sizes, it will be energetically advantageous to air dry themselves: estimate the
range of animal masses for which this is true. You may use the following facts: a mouse weighs
20 g, has a radius of 1 cm, and shakes itself with angular velocity ω = 30 rad/s. The latent heat
of vaporization of water at room temperature is λ = 2430 J/g.
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Problem A2: Black Tides

Consider a spherically symmetric, nonrotating star of mass m and radius r. If it gets too close
to the supermassive black hole of mass M ≫ m at the center of a galaxy, it will be ripped apart
by tidal forces. Throughout this problem, neglect relativistic effects and give answers in terms of
G, M , m, and r. When asked for numbers, assume the star is Sun-like, so that m = 2× 1030 kg,
r = 7× 108m, and M = 106m, and give all numeric answers to one significant figure.

a. Suppose the star orbits the black hole in a circle of radius R. What is the radius of curvature of
the trajectory of each point on the star’s surface? Note that the star does not rotate as it orbits.

b. Gas on the star’s surface facing the black hole is attracted to the star by the star’s gravity,
and pulled away from the star by the black hole’s tidal force. Write an expression for the tidal
acceleration at the point closest to the black hole.

c. At a radius R where the gravitational and tidal forces are in equilibrium, the star will start
being tidally ripped apart. This effect can only be observed when R is outside the black hole’s
Schwarzschild radius Rs = 2GM/c2. Find an expression for R and numerically evaluate the ratio
R/Rs.

For the rest of the problem, we consider a star on a parabolic orbit whose periapsis (distance of
closest approach) is equal to the radius R found in part 1. Near periapsis, the star will be torn
apart in a “tidal disruption event”. As a very rough model of this phenomenon, assume the star is
initially a single rigid body. The moment it reaches periapsis, it fragments into many rigid pieces
which do not interact with other, and feel only the black hole’s gravity.

d. Afterward, some of the fragments will escape from the black hole, while the rest remain bound.
Numerically evaluate the fraction of the mass which escapes.

e. An escaping fragment has speed vf when it is far from the black hole. Find the maximum
possible value of vf , among all fragments, and evaluate it numerically.

f. A bound fragment orbits with period Tf . Find the minimum possible value of Tf , among all
fragments, and evaluate it numerically.

As bound fragments return to the location of the initial disruption, they collide with other debris,
causing them to be absorbed into the black hole’s accretion disk. This process produces an enormous
amount of light, with the luminosity (or energy emitted over time) proportional to the mass
absorption rate. If t = 0 at the moment the star fragments apart, then light begins to be emitted at
the time you found in part 5, and afterward the luminosity scales as L ∝ 1/tn for a constant n.

g. Find the value of n. Assume for simplicity that the total energies of the bound fragments are
uniformly distributed between their minimum and maximum values.
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Problem A3: Bitter and Magnetic

In this problem, we explore some of the design considerations for an electromagnet.

a. Consider an electromagnet consisting of a long solenoid, i.e. a spiral of thin wire wrapped in
a single layer around a cylindrical nonmagnetic core. The wire is wrapped in such a way that
the adjacent coils almost touch. When a current is sent through the wire, a magnetic field is
generated inside the solenoid; this magnetic field exerts an outward force on the wire. Find the
pressure P on the solenoid in terms of the magnetic field B inside the solenoid.

b. The pressure on the “walls” of the solenoid is counteracted by tension inside the wire. Derive an
expression for the maximal achievable magnetic field B in terms of coil radius a, wire diameter
(thickness) t ≪ a, and wire tensile strength σ. (The tensile strength of a material is the force per
unit cross-sectional area that needs to be applied in order to pull the material apart.) Assume
the wire is circular in cross-section.

c. Let a = 0.1m, t = 0.001m. The tensile strength of copper is σ = 250MPa, and the permeability
of free space is µ0 = 4π × 10−7H/m. What is the maximum magnetic field that can be achieved
in a single-layer solenoid made out of such a wire without the wire snapping?

d. In theory, we could generate a stronger field by increasing the wire thickness, but the nonuniform
distribution of current inside the wire makes this difficult to analyze.

Instead, consider wrapping the solenoid in many layers of wire. We will place adjacent layers a
distance t apart so that they just barely don’t touch, and will adjust the current through each
wire to equalize the tensile stress. The wire coils span the space from an inner core radius of a to
an outer radius of b. Estimate the maximum achievable field strength inside this electromagnet.
You may assume that the wire is thin (t ≪ a, t ≪ b− a).

e. Estimate the numeric value of the maximum magnetic field that can be achieved in a multi-layer
solenoid described above with a = 0.1m and b = 0.3m.
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Problem B1: Scroll ’n’ Roll

Consider a disk with mass m and radius R placed on a large and frictionless table. An ant with
mass m is placed on top of the disk. The ant can move freely without sliding on the disk.

a. Initially, the ant starts on the edge of the disk, and both the ant and the disk are at rest (relative
to the table). Then, the ant starts walking across the disk’s diameter, such that in the frame of
the disk, the ant has (constant) velocity v. What is ant’s velocity in the frame of the table?

b. Suppose instead that the ant walks counterclockwise along the edge of the disk at constant speed
v in the frame of the disk. What is the ant’s speed in the frame of the table?

c. Now there are two ants on the disk! The second ant (also of mass m) starts at distance R/2
from the center of the disk, with an angle offset by θ from the first ant. The second ant walks
counterclockwise around this circle with radius R/2 at speed v/2 (relative to the disk). Find all
θ such that the second ant is stationary in the frame of the table.

θ
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Problem B2: Where’s the Kaboom?

A plane is flying horizontally at constant velocity v and altitude z = H. The speed of sound at
altitude z is given by

c(z) = α
√
T (z),

where α is a constant. Suppose v > c(H), and define the Mach number as

M ≡ v

c(H)
> 1.

If c(z) is constant for all z, then the envelope is a cone with half angle θ where sin θ = 1
M and

propagates with the speed of sound c.

a. Sketch the envelope.

b. Now, the speed of sound depends on the altitude because the temperature is not uniform. For
the altitudes we are interested in, the following linear model works well:

T (z) = T0 − βz,

where β > 0 is a constant. Sketch the envelope of the boom.

c. If the Mach number is large enough then the sonic boom hits the ground. Assume it is large
enough. On the ground, there are two sensors at z = 0 and z = h, one directly above the other.
Assume h ≪ H and βh ≪ T0. At time t1, the top sensor receives the sonic boom signal and at
a later time, the bottom sensor also receives the signal. Express the Mach number M of the
airplane in terms of H,h, t, T0, α, β, where t = t2 − t1.

d. If the plane travels slower without changing direction, its sonic boom could become no longer
audible from the ground for the Mach number 1 < M < Mmax. What is the upper limit for the
Mach number Mmax for which this can occur? Express your answer in terms of T0, H, α, β. You
do not necessarily need all of these parameters.
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Problem B3: Locked and Moded

a. Consider two mirrors facing each other separated by a distance L (a Fabry–Pérot resonator).
The cavity (the space between the two mirrors) is in vacuum (index of refraction n = 1, no
dispersion), and the mirrors have high reflectivities so that the main resonance condition is that
an integer multiple of half-wavelengths fit into the cavity. A light pulse containing multiple
different frequencies travels between the mirrors and interferes with itself.

i. State the condition for resonance in terms of L and wavelength λ.

ii. Write down an expression for the resonant angular frequencies ωm, with m counting each of
the possible resonances.

iii. What is the angular frequency spacing ∆ω ≡ ωm+1−ωm between adjacent angular frequencies?

b. The electric field at the antinodes of the standing waves in the resonator is a superposition of
oscillations at the resonant angular frequencies and is given by:

Ebefore(t) =
+∞∑

k=−∞
Ek cos

[(
k∆ω

)
t
]
.

Now suppose we introduce a gain medium (such as a doped crystal) into the laser cavity. The
gain medium completely absorbs incoming light and re-emits it over a finite range of N angular
frequencies centered around some angular frequency ω0, which coincides with one of the ωm

values determined above. Within this bandwidth, the gain medium amplifies and supports
oscillations at all ωm that fall within the range. (Assume N is an odd number.)

Assume that each of these N angular frequencies—also referred to as modes—has the same
amplitude E0, and that their phases are locked such that there is zero relative phase between
them at t = 0. This condition is known as mode locking. Set their common phase so that all
electric fields are expressed as cosine functions, consistent with the form of Ebefore(t).

i. Write an expression for the total electric field Eafter(t) as the sum of these N equally spaced
angular frequencies (with zero relative phase).

ii. Show that in the limit of many angular frequencies (∆ω ≪ ω0, N ≫ 1), the time-dependent
electric field approximately takes the following form:

Eafter(t) ≈ E0f(ω0, t)
sin

(
N (∆ω) t

2

)
sin

(
(∆ω) t

2

)
and determine the function f(ω0, t).

c. To answer the next part of the problem, assume N is odd and find the following limit when
a = πm, where m is an integer:

lim
x→a

sin(Nx)

sinx
.

d. Mode locking can dramatically increase the peak intensity I of the laser output. Use the
expression I = γE2, where γ is a known constant, to answer the following questions.

i. Determine to the total instantaneous intensity Iafter(t) of the electric field.
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ii. What is the maximum possible intensity of the total field, and at what time(s) is this achieved?

e. The uncertainty principle states ∆x∆p ≥ ℏ
2 . In optics, we are more commonly interested in the

duration of the pulse rather than its spatial extent; the two are related via ∆x = c∆t.Consider
the problem of setting up a very short laser pulse. Use the uncertainty principle to estimate
the required bandwidth (range of frequencies). Compare that to the relationship between pulse
duration and gain bandwidth that we’re achieving in this problem.
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